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A. SUMMARY 

This report presents the status of the research project being 

conducted in the Department of Aeronautics and Astronautics at the 

University of Washington under Research Grant NsG-401 from the 

National Aeronautics and Space Administration. 

work completed during the period October 1, 1965 through April 1, 

1966. It is for use of the technical monitor of the grant and is 

not intended for publication or general distribution. 

This report covers 

The project consists of an analytical and experimental study 

to establish a procedure for stress analysis of a viscoelastic 

structure subject to transient temperature and time-dependent load- 

ings. 

described in previous reports. The analytical basis for the inter- 

pretation of photoviscoelastic observations in the linear range, 

details of the experimental procedure, and example problems were 

presented in September 1965. That report is in preparation by 

NASA as a formal NASA publication. This document describes subse- 

quent work to further extend the method and to refine the establish- 

ed procedures. 

The extension of photoelasticity to this problem has been 

* 

Section B contains a description of further work on the linear 

photoviscoelastic problems. Modifications to the photoelastic 

* 
"Photoviscoelasticity" by E. H. Dill and C. W. FWlkeS, University 
of Washington, Department of Aeronautics and Astronautics, Report 
65-1. 
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bench a r e  descr ibed.  The d i r e c t  reduct ion  of d a t a  f r o m  a visco-  

e l a s t i c  t e s t  by u s e  of  a u n i a x i a l  t e s t  specimen as an analog c o m -  

pu te r  is  presented. Severa l  problems which i l l u s t r a t e  photovisco- 

e l a s t i c  procedures and which are of p r a c t i c a l  i n t e r e s t  are solved. 

The extension of t h e  embedded polar i scope  method t o  l o w  

modulus material is a lso  descr ibed  i n  Sec t ion  B. T h i s  technique 

i s  u s e f u l  e i t h e r  f o r  e las t ic  or v i s c o e l a s t i c  materials where t h e  

" f i l m "  of Polaro id  would s u b s t a n t i a l l y  a l te r  t h e  stress d i s t r i b u -  

t i o n .  Three-dimensional models w i t h  t r a n s i e n t  stress d i s t r i b u t i o n  

can be s tudied  by t h i s  means. 

T h e  s o l u t i o n  of a v i s c o e l a s t i c  problem w i t h  non-uniform 

temperature d i s t r i b u t i o n  i s  given i n  Sec t ion  C. W e  are now i n  the  

process  of obta in ing  an a n a l y t i c a l  s o l u t i o n  of t h i s  problem t o  

compare w i t h  t h e  experimental  r e s u l t s .  

I n  order t o  extend t h e  p h o t o v i s c o e l a s t i c  technique t o  dynamic 

loading,  w e  r e q u i r e  a means of r a p i d l y  r o t a t i n g  the p l ane  of po la r -  

i z a t i o n  of t h e  analyzer  and p o l a r i z e r .  An inven t ion  is  descr ibed  

i n  Sec t ion  D i n  which t h e  p l ane  of p o l a r i z a t i o n  of a p o l a r i z e r  i s  

r o t a t e d  e l e c t r o n i c a l l y .  

The fundamental theory  for  the  s tudy  of non-l inear  v i scoe la s -  

t i c i t y  and e l a s t i c i t y  problems is  p resen ted  i n  Sec t ion  E. The 

na tu re  of c o n s t i t u t i v e  r e l a t i o n s  for t h e  mechanical and electro- 

magnetic behavior of h igh  polymers exper ienc ing  l a r g e  s t r a i n s  i s  

der ived.  The use of such r e l a t i o n s  for a given material  t o  s o l v e  

stress a n a l y s i s  problems for non-l inear  v i s c o e l a s t i c i t y  and non- 

l i n e a r  e l a s t i c i t y  by an ex tens ion  of p h o t o e l a s t i c i t y  is  ind ica t ed .  

. *  

* '  

. 
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1. INTRODUCTION 

I n  t h i s  s ec t ion ,  t h e  progress  on t h e  experimental  techniques 

f o r  l i n e a r  photothermoviscoelasticity i s  reviewed. Improvements i n  

t h e  equipment are descr ibed along wi th  t h e  p r e s e n t a t i o n  of new ex- 

per imental  techniques.  The r e s u l t s  of several new tests are pre- 

sented. 

Included i n  t h i s  s e c t i o n  is a d e s c r i p t i o n  of t h e  analog method 

of d a t a  reduct ion which considerably s i m p l i f i e s  t h e  determinat ion 

of the stress h i s t o r y  i n  the model. A paper desc r ib ing  the analog 

method has  been accepted f o r  pub l i ca t ion  by the Socie ty  for Experi- 

mental  S t r e s s  Analysis.  Several  experiments are described i n  t h i s  

r e p o r t  i n  which t h e  analog method w a s  employed f o r  data reduction. 

Prel iminary experiments have been performed on t h e  development 

of an embedded polar i scope  technique t o  be used i n  three-dimension- 

a l  v i s c o e l a s t i c  models. The r e s u l t s  of t h e s e  experiments are q u i t e  

promising and several a spec t s  of t h e  technique have been e s t ab l i shed .  

An a c t u a l  three-dimensional test w i l l  be performed i n  t h e  fu ture .  

2 PHOTOVISCOELASTIC BENCH 

Improvements have been made on t h e  r o t a t i n g  Polaro id  bench: 

a 35m pulse-cine camera, Northridge Research Type RF 1 2 ,  has  been 

added t o  r ep lace  t h e  16mm Cine Special .  

gered b y  an electrical pu l se  for  s i n g l e  frame opera t ion  a t  rates 

The 35mm camera is  t r i g -  

B. EXPERIMENTAL METHODS 

by 
C. W. Fowlkes 
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t o  12 frames/second and w i l l  ope ra t e  c i n e  a t  20 frames/second. A 

p u l s e  generator  designed and b u i l t  i n  our l abora to ry  produces 

shaped pu l ses  a t  f requencies  cont inuously a d j u s t a b l e  between 5 

pulses/second and 1 p u l s e  each 120  seconds. 

switches 110 vdc i n t o  t h e  Po la ro id  s t epp ing  so lenoids  and, through 

a t i m e  de lay ,  switches 28  vdc i n t o  t h e  35mm camera. Thus, for  

every pu l se  i n t o  the system, t h e  po la ro ids  ro ta te  a f ixed  i n t e r v a l ,  

s top ,  and then a s i n g l e  p i c t u r e  i s  taken. The image of a clock 

contained wi th in  t h e  camera is  included on each frame. 

This p u l s e  genera tor  

T h e  increased r e s o l u t i o n  of t h e  l a r g e r  35mm negat ive  improves 

the  accuracy of determining f r i n g e  orders i n  reg ions  of stress con- 

c e n t r a t i o n .  T h e  semi-automatic ope ra t ion  of the  new system s impl i -  

f ies  the  t e s t i n g  procedure. 

bench w i t h  the  35mm camera i s  shown i n  F igure  1. 

A photograph o f  t h e  r o t a t i n g  P o l a r o i d  

3. ANALOG METHOD OF DATA REDUCTION 

I n  genera l ,  t h e r e  can be t i m e  v a r i a t i o n s  of the  isochromatic 

f r i n g e  order, the i s o c l i n i c  o r i e n t a t i o n ,  and t h e  temperature  a t  

each p o i n t  i n  a v i s c o e l a s t i c  model. 

t he  h i s t o r y  of t he  p r i n c i p a l  stress d i f f e r e n c e  a t  any p o i n t  i n  t he  

model w a s  discussed i n  previous r e p o r t s .  That procedure can be 

app l i ed  i f  t h e  material  is  l i n e a r  viscoelastic and o p t i c a l l y  l i n e a r .  

A t e n s i l e  c a l i b r a t i o n  w a s  performed t o  determine the  mechanical and 

o p t i c a l  p r o p e r t i e s  of the model material over t h e  range of stresses 

and temperatures e x i s t i n g  i n  t he  model and t h e  obse rva t ions  f r o m  an 

experiment were processed numerical ly  us ing  t h e  c a l i b r a t i o n  da ta .  
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Another approach for determining t h e  h i s t o r y  o f  d i f f e r e n c e  o f  

p r i n c i p a l  stresses f r o m  observed f r i n g e  o rde r  is  t h e  following ana- 

log  method. A simple model, such as a t e n s i l e  specimen, w h o s e  

state o f  stress is known is constructed.  This model i s  then sub- 

j e c t e d  t o  t h e  same temperature h i s t o r y  as a p a r t i c u l a r  p o i n t  of t h e  

prototype whi le  t h e  loads are adjus ted  t o  produce t h e  same isochro- 

m a t i c  and i s o c l i n i c  h i s t o r y  as observed i n  t h e  prototype. 

p r i n c i p a l  stress d i f f e r e n c e  h i s t o r y  i s  then  computed f o r  t h e  model 

from t h e  boundary loads.  

fe rence  h i s t o r y  for t h e  prototype. 

The 

The r e s u l t  i s  t h e  p r i n c i p a l  stress d i f -  

I n  p r i n c i p l e ,  t h e  analog method could be used t o  reduce t h e  

data frm any test. I n  p rac t i ce ,  however, accounting for t h e  iso- 

c l i n i c  v a r i a t i o n  i n  an analog model is d i f f i c u l t .  

method is  m o s t  u s e f u l  when t h e  i s o c l i n i c  o r i e n t a t i o n  is constant .  

For such problems, t h e  analog model can be a simple t e n s i l e  speci-  

men. Severa l  problems of t h i s  type are analyzed below. 

The analog 

The analog s o l u t i o n s  w e r e  performed on the  t e n s i l e  c reep  

appara tus  p i c t u r e s  i n  Figure 2. The v a r i a t i o n  i n  f r i n g e  order w a s  

sensed by a photomul t ip l ie r  tube, t h e  success ive  m a x i m u m s  and mini- 

m u m s  being success ive  h a l f  f r i n g e  orders. The f r i n g e  order  h i s t o r y  

a t  t h e  p o i n t  of  t h e  complex model t o  be analyzed w a s  t r a n s f e r r e d  t o  

t h e  c h a r t  o f  one channel of  a brush recorder  i n  t h e  form of m a x i -  

m u m s  and m i n i m u m s  of l i g h t  i n t e n s i t y  versus  time. Par t ia l  f r i n g e  

orders w e r e  p l o t t e d  between t h e  m a x i m u m s  and minimums and a cont in-  

uous s i n u s o i d a l  master curve of l i g h t  i n t e n s i t y  w a s  drawn through 

t h e  po in t s .  The model w a s  t h e n  loaded i n  such a manner as t o  match 

-5- 



t h e  output  of t h e  photomul t ip l ie r  tube  t o  t h i s  master curve.  This  

load w a s  recorded s imultaneously from a s t r a i n  gage load ce l l .  

The requi red  load rate w a s  r e l a t i v e l y  l o w  and loading  could 

be done by hand. Severa l  tests show t h a t  s h o r t  t i m e  amplitude 

errors of &20% i n  p l o t t i n g  and t r a c k i n g  t h e  master f r i n g e  o rde r  

curve produce v a r i a t i o n s  of  only about f5% i n  t h e  f i n a l  stress 

h i s t o r y .  After  a few p r a c t i c e  runs one could f o l l o w  t h e  master 

curve q u i t e  e a s i l y  and ge t  r e s u l t s  reproducib le  t o  w i t h i n  6%. An 

e l e c t r o n i c  servo would be h e l p f u l  i f  a very  l a r g e  number of so lu-  

t i o n s  w e r e  t o  be run. 

4. MODEL MATERIAL 

The model material  w a s  a mixture  of epoxy r e s i n s  suppl ied  by 

CIBA Products Company, F a i r  Lawn, New Je r sey .  A mixture  of A r a l -  

d i t e  502 c a s t i n g  r e s i n  and A r a l d i t e  508 f l e x i b l e  modi f ie r  w i th  

t r i e thy lene te t r amine  hardener can be prepared having a range of 

r e l a x a t i o n  t i m e s  s u i t a b l e  for p h o t o v i s c o e l a s t i c  model experiments.  

The materials are mechanically and o p t i c a l l y  l i n e a r  for  a wide 

range of s t r e s s e s  and temperatures ,  and have less than  1% permanent 

creep.  The materials used f o r  models r e p o r t e d  h e r e  w e r e  mixes of 

A r a l d i t e  502 and 508 wi th  10% hardener.  The r e s i n  components are 

hea ted  t o  125OF.8 mixed thoroughly,  and cast  i n t o  s h e e t s  between 

g l a s s  p l a t e s .  

4368 mold release agent  w i l l  p revent  adhesion t o  t h e  m o l d .  The 

mixture  is  cured for 1 2  hours  a t  160'F. 

Wiping t h e  g l a s s  p l a t e s  w i t h  commercial Hysol AC4- 
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5. VISCOELASTIC PLATE WITH HOLE 

A s t r i p  t h r e e  inches wide and e i g h t  inches long w a s  c u t  f r o m  

a cast s h e e t  of +-inch t h i c k  ma te r i a l  and a *-inch diameter h o l e  

machined i n  i t s  center .  Rigid g r i p s  w e r e  bonded along t h e  s h o r t e r  

sides. 

and t e s t e d  (Figure 3). 

A t e n s i l e  c reep  specimen w a s  prepared from t h e  same s h e e t  

The model w a s  placed i n  a l i g h t  f i e l d  on t h e  pho tov i scoe la s t i c  

bench descr ibed i n  Sec t ion  2 and shown i n  Figure 1. I n  one tes t  

plane,  p o l a r i z i n g  s h e e t s  (Polaroid "32) w e r e  used and rotated 

during t h e  t es t  t o  monitor t h e  i s o c l i n i c  p a t t e r n s .  I n  a second 

test ,  f ixed  p o l a r i z i n g  shee t s  having a t tached  q u a r t e r  wave p l a t e s  

w e r e  used t o  check t h e  isochromatic p a t t e r n s .  A weight w a s  hung 

on t h e  specimen and t h e  specimen w a s  allowed t o  c reep  under t h e  

cons t an t  load. 

Photographs w e r e  made of the  changing f r i n g e  p a t t e r n s  and t h e  

data w a s  subsequently read from the  f i l m  using an en la rge r  and a 

microscope. A p r i n t  of t h e  model f r i n g e  p a t t e r n  a t  10,500 seconds 

a f te r  loading is  reproduced i n  Figure 4. Z e r o  time corresponds t o  

t h e  a p p l i c a t i o n  of t h e  load. 

during t h e  test. 

The i s o c l i n i c  p a t t e r n s  d i d  n o t  vary 

The isochromatic h i s t o r y  a t  t h e  p o i n t  of maximum stress a t  

t h e  edge of t h e  h o l e  w a s  read f r o m  t h e  fi lm. Th i s  curve d i f f e r s  

on ly  by a cons t an t  f r o m  t h e  curve represent ing  t h e  isochromatic 

h i s t o r y  i n  a t e n s i l e  creep (constant  stress) test  (Figure 5).  

This  c o n s t a n t  is  t h e  ra t io  of stresses. 

t h e  h o l e  is  thus  found t o  be cons tan t  w i th  t i m e  and i t s  magnitude 

The stress a t  t h e  edge of  
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i s  e a s i l y  computed using t h e  t e n s i l e  c a l i b r a t i o n .  This t es t  i s  

t r i v i a l  i n  t h a t  t h e  outcome can  be predic ted  knowing t h a t  the 

m a t e r i a l  i s  l i n e a r  v i s c o e l a s t i c  and having a s o l u t i o n  f o r  the 

s t r e s s e s  i n  an  elastic material i n  t h i s  configurat ion.  

A Hysol 4485 (e las t ic )  model of t h e  same dimensions w a s  pre- 

pared and tested t o  determine t h e  stress a t  t h e  edge of the  hole .  

These r e s u l t s  agreed w i t h  t h e  pho tov i scoe la s t i c  tes t  and the ana- 

l y t i c a l  so lu t ion .  

6. VISCOELASTIC PLATE WITH UNBONDED R I G I D  INCLUSION 

The hole  of t h e  v i s c o e l a s t i c  p l a t e  (Sect ion 5)  w a s  then f i t t e d  

w i t h  a n  aluminum disc. The aluminum disc  w a s  machined so t h a t  it 

would s l ide  smoothly i n t o  the  hole  of t h e  re laxed  v i s c o e l a s t i c  

p l a t e  a f t e r  a l aye r  of Teflon t ape  had been bonded around i t s  edge. 

The model w a s  placed i n  the po la r i zed  l i g h t  f i e l d  and loaded i n  

t e n s i o n  w i t h  a weight. Selected photographs taken during the  t e s t  

are shown i n  Figure 6. Comparing t h e  f r i n g e  p a t t e r n s  f r o m  t he  t w o  

tests r evea l s  a d i f f e r e n c e  as t h e  s t r a i n s  become large. I n  t h i s  

test, a s  t h e  model s t r a ins  t h e  s i d e s  of t h e  h o l e  bear a g a i n s t  the 

r i g i d  d i s c  w h i l e  t h e  top  of the  hole p u l l s  away f r o m  t h e  su r face  

of the  disc. 

The maximum shear  stress s t i l l  occurs  a t  t h e  side of t h e  hole 

where it bears  aga ins t  t he  d i s c .  The  f r i n g e  o rde r  h i s t o r y  a t  t h i s  

p o i n t  w a s  read and w a s  found t o  be n e a r l y  i d e n t i c a l  w i t h  the  f r i n g e  

order  h i s t o r y  i n  the p l a t e  wi thout  t h e  inc lus ion .  The i s o c l i n i c  

a t  t h i s  po in t  was cons t an t  dur ing  t h e  tes t .  

-8- 
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A HySOl 4485 model w a s  f i t t e d  wi th  a s o l i d  d i s c  and t h e  m a x i -  

mum f r inge  order  a t  t h e  edge of t h e  hole  w a s  compared t o  t h e  f r inge  

order  i n  t h e  same p l a t e  without t h e  disc .  N o  d i f f e rence  i n  t h e  

f r i n g e  order  versus appl ied stress behavior could be found. 

7. VISCOELASTIC PLATE WITH BONDED R I G I D  INCLUSION 

A viscoelastic p l a t e  8 inches long, 3 inches w i d e ,  and 0.25 

inches t h i c k  w a s  prepared with a %-inch diameter hole.  An alumi- 

num disc w a s  machined t o  f i t  i n t o  t h e  relaxed p l a t e  with approxi- 

mately 0.002 d iamet r ica l  clearance.  The d i s c  w a s  bonded i n t o  t h e  

p l a t e .  

cons is ted  of an i d e n t i c a l  m i x  of t h e  epoxy used t o  case t h e  p l a t e  

i t s e l f  . 

Adhesive used for bonding t h e  r i g i d  d i s c  i n t o  t h e  p l a t e  

The p l a t e  w a s  placed i n  t h e  polar iscope and loaded with a 

weight. The f r inges  w e r e  recorded on t h e  35mm pulse  camera. One 

run w a s  made with plane po la r i ze r s  r o t a t i n g  i n  a stepwise manner 

for recording t h e  i s o c l i n i c  h is tory .  During the  i n i t i a l  moments 

of the  test  t h e  i s o c l i n i c s  obscured t h e  r ap id ly  changing isochro- 

m a t i c s  so a second run w a s  made using c i r c u l a r l y  polar ized  l i g h t .  

A m o r e  accura te  observation of t h e  isochromatics could be made i n  

t h i s  second run. Figure 7 shows t h e  i s o c l i n i c s  a t  70 seconds a f t e r  

loading; t h i s  is  typical of the  p a t t e r n  throughout t h e  test .  

isochromatics are shown i n  Figure 8. 

ted from those made during t h e  second test. 

o rde r  i n  t h i s  t es t  occurred a t  po in t s  on t h e  c e n t e r l i n e  of t h e  

model 0.125 inches above and below the  r i g i d  d isc .  

The 

These photographs w e r e  selec- 

The m a x i m u m  f r inge  
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The f r i n g e  order h i s t o r y  a t  t hese  p o i n t s  i s  shown i n  Figure 9. 

The i s o c l i n i c  o r i e n t a t i o n  a t  t hese  p o i n t s  was cons tan t .  

I n  a p l a t e  with a hole ,  p o i n t s  of high stress occur a t  t h e  

s i d e s  and the  top  and bottom su r faces  of  t h e  hole.  These same 

po in t s  exhib i ted  nea r ly  zero  f r i n g e  order  i n  t h e  p l a t e  with t h e  

bonded r i g i d  d i sc .  

r i g i d  d i s c  occurred along the  s i d e s  of t h e  d i s c  0.125 inches away 

from t h e  d isc .  The f r i n g e  order  h i s t o r y  he re  lagged a t  t h e  maxi- 

mum po in t  by approximately % throughout t h e  test .  

t i o n  was run f o r  t h i s  po in t .  

t o r y  as determined from t h e  analog i s  shown i n  Figure 10. 

A po in t  of high stress i n  t h e  p l a t e  with t h e  

An analog solu-  

The p r i n c i p a l  stress d i f f e r e n c e  h i s -  

8. VISCOELASTIC PLATE WITH BONDED ELASTIC INCLUSION 

A v i s c o e l a s t i c  p l a t e  of t h e  s a m e  dimensions as t h e  preceeding 

tes ts  was prepared. A %-inch diameter c i r c u l a r  d i s c  of low modu- 

l u s  (465 p s i )  Hysol 4485 was machined t o  a loose  f i t  w i t h  t h e  ho le  

i n  t h e  v i s c o e l a s t i c  p l a t e .  A s  i n  t h e  t e s t  of Sec t ion  7 ,  t h e  d i s c  

w a s  bonded i n t o  t h e  p l a t e  with t h e  s a m e  epoxy a s  was used t o  cast  

the  p l a t e .  I t  i s  important t o  match t h e  p r o p e r t i e s  of t h e  adhes- 

i v e  t o  t h e  p rope r t i e s  of  t h e  p l a t e .  

adhesive would have a l t e r e d  t h e  f r i n g e  p a t t e r n  considerably.  

Even a t h i n  l a y e r  of  r i g i d  

The p l a t e  was placed i n  t h e  po la r i scope  and loaded wi th  a 

T e s t s  were run with plane p o l a r i z e d  l i g h t  and wi th  c i r c u -  weight. 

l a r l y  polar ized l i g h t  a s  i n  T e s t  7. The i soc l in i c s  a t  2,000 sec- 

onds a f te r  loading a r e  shown i n  Figure 11. This p a t t e r n  is f a i r l y  

t y p i c a l  of t h e  i soc l in ic  p a t t e r n  throughout t h e  t es t .  Se lec t ed  

-10- 
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photographs of t he  isochromatics occurr ing i n  c i r c u l a r l y  polar ized 

l i g h t  are shown i n  Figure 12 .  

The isochromatic pa t t e rns  of t h i s  test show some similari t ies 

t o  the  previous tes t  with t h e  r i g i d  disc .  The f r inge  order a t  t h e  

s i d e s  of t he  hole  and a t  the top and bottom of t h e  hole  remained 

less than 1 throughout t he  test. The maximum f r inge  order  again 

occurred 0.125 inch above and below the  inc lus ion  and is  shown i n  

Figure 13. This same poin t  is  the  po in t  of minimum f r inge  order  

i n  a simple p l a t e  with a hole. An analog so lu t ion  w a s  run and t h e  

h i s t o r y  of the  m a x i m u m  pr inc ipa l  stress d i f fe rence  w a s  determined 

(Figure 14) .  

9. NON-HOMOGENEOUS VISCOELASTIC PLATE 

A loading j i g  w a s  constructed t o  apply uniform pressure along 

the  edge of a l o w  modulus p l a t e  (Figure 15) .  A i r  pressure is 

appl ied through a t h i n  latex diaphragm. P lex ig las  p l a t e s  contain 

t h e  m o d e l  and prevent  it from buckling. A copious layer  of sili- 

cone o i l  i s  spread between the model and t h e  P lex ig las ,  keeping 

f r i c t i o n  t o  an in s ign i f i can t  level.  The whole j i g  can be placed 

i n  t h e  polar iscope s ince  the loads on t h e  P lex ig las  are w e l l  below 

t h e  level necessary t o  cause any fr inges.  Pressure i s  supplied t o  

t h e  model by f i l l i n g  a s torage  tank t o  t h e  predetermined pressure 

and then opening a valve. 

compared t o  t h e  volume of t h e  s torage tank. 

The volume of  t h e  j i g  is  very s m a l l  

A diagram of the  test specimen is shown i n  Figure 16. A 

homogeneous c a l i b r a t i o n  specimen w a s  made of Hysol 4485 t o  deter-  
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mine t h e  ac tua l  p re s su re  a c t i n g  on t h e  model for a given a i r  pres -  

sure .  Photographs of t h e  loaded Hysol model are shown i n  Figure 

1 7  and t h e  c a l i b r a t i o n  curve i n  Figure 18. The photographs w e r e  

taken several weeks a f t e r  t h e  c a l i b r a t i o n  and show a cons iderable  

edge f r inge .  

c a l i b r a t i o n  w a s  performed. 

This d i s tu rbance  w a s  n o t  ev iden t  when t h e  a c t u a l  

Two shee t s ,  A and B, having d i f f e r e n t  r e l a x a t i o n  t i m e s  w e r e  

cast  i n  t h e  laboratory.  

t h e  propor t ions  when mixing t h e  epoxy r e s i n s .  

mix of  A r a l d i t e  502 and 508 p l u s  10% hardener ,  and Shee t  B w a s  a 

45/50 m i x  p lus  10% hardener.  The t e n s i l e  c reep  compliances o f  A 

and B are shown i n  Figure 19. Blocks of t h e s e  materials 2-5/8 

inches  by 3 inches w e r e  machined and t h e  2-5/8 inches edges o f  one 

"A" block and one "B" b lock w e r e  bonded toge the r .  The epoxy mix- 

t u r e  used t o  cas t  Sheet  A w a s  used f o r  t h e  adhesive t o  j o i n  Blocks 

A and B,  thus  in su r ing  t h a t  no f u r t h e r  non-homogeneity would be 

introduced. One 6 inch edge of t h e  composite model w a s  then bonded 

secu re ly  t o  a %-inch square aluminum bar. The oppos i t e  6 inch edge 

which w a s  t o  be exposed t o  t h e  p r e s s u r e  loading  w a s  then  machined 

t o  t h e  requi red  f i n a l  dimension. A h igh  speed r o u t e r  w a s  used t o  

produce a smooth edge. 

The r e l a x a t i o n  t i m e  i s  v a r i e d  by changing 

Sheet  A w a s  a 50/50 

The model was allowed t o  relax a t  t e s t i n g  temperature  (70'F) 

for  1 2  hours.  I t  w a s  then  wiped wi th  a generous l a y e r  of low 

v i s c o s i t y  s i l i c o n e  o i l  and p laced  i n  the c a l i b r a t e d  loading  j i g .  

The model w a s  loaded wi th  a s t e p  i n p u t  of 15 p s i  a i r  p r e s s u r e  

(11.1 p s i  e f f e c t i v e  p re s su re )  and t h e  r e s u l t i n g  f r i n g e  p a t t e r n s  

Y 

. 
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w e r e  photographed wi th  t h e  3 5 m  pu l se  camera. 

The model w a s  t e s t e d  first i n  p lane  po la r i zed  l i g h t  wi th  ro- 

t a t i n g  po la ro ids  t o  determine t h e  i s o c l i n i c  h i s t o r y .  A set  o f  t h e  

photographs taken 5 seconds, 30 seconds, and l O , O O O  seconds after 

loading are shown i n  Figure 20. Another test  w a s  performed wi th  

c i r c u l a r l y  polar ized  l i g h t  t o  check t h e  isochromatics.  Photographs 

selected a t  s e v e r a l  t i m e s  a f t e r  loading a r e  shown i n  Figure 21. 

The f r i n g e  order  d a t a  was read f r o m  t h e  f i lm  using an en la rge r  

wi th  a microscope being used t o  v i e w  high f r i n g e  order reg ions  of 

t h e  negat ive.  

The m a x i m u m  f r i n g e  order  i n  both A and B occurred on the  

p res su r i zed  su r face  near  the  A-B i n t e r f ace .  As near  as could be 

determined, t h e  i s o c l i n i c  o r i e n t a t i o n  a t  t h e s e  p o i n t s  w a s  cons t an t  

throughout t h e  test  (Figure 19) .  The  isochromatic h i s t o r i e s  f o r  

A and B are shown i n  Figure 22. 

Analog s o l u t i o n s  w e r e  performed t o  determine the  h i s t o r y  of  

t h e  p r i n c i p a l  stress d i f f e rence  f o r  these p o i n t s  i n  p a r t  A and B 

of t he  m o d e l .  These s o l u t i o n s  are shown i n  Figure 238 along wi th  

t h e  s o l u t i o n  for a homogeneous model. The stress i n  t h e  non-homo- 

geneous model is temporarily increased during t h e  e a r l y  p a r t  of 

the test  and then  relaxes toward homogeneous model va lue  f o r  t i m e s  

of t h e  o rde r  of t h e  r e l a x a t i o n  t i m e  f o r  t h e  material. Enlargements 

of t h e  model show t h e  i r r e g u l a r i t y  i n  t h e  loaded boundary as t h e  

lower modulus (€3) p a r t  experiences a l a r g e r  s t r a i n  than  t h e  h igher  

modulus (A) p a r t .  This i r r e g u l a r i t y  becomes less pronounced near 

t h e  end of  t h e  test. 
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10. EMBEDDED POLARISCOPE 

The embedded Polaroid technique descr ibed he re  was developed 

f o r  studying t h e  stresses i n  three-dimensional models of low modu- 

l u s  ma te r i a l .  One poss ib l e  a p p l i c a t i o n  i s  g r a v i t y  loading of l o w  

modulus mater ia l s .  For these  experiments,  t h e  model m a t e r i a l  must 

have a very low modulus i n  order  t o  maintain s i m i l a r i t y  when load- 

ed by gravi ty .  The ordinary embedded polar i scope  is  much t o o  s t i f f  

f o r  t h i s  appl ica t ion .  Another poss ib l e  a p p l i c a t i o n  i s  t h e  s tudy 

of three-dimensional v i s c o e l a s t i c  models i n  which t h e  changing 

f r i n g e  p a t t e r n s  must be observed so t h a t  f rozen stress techniques 

cannot be used. 

The standard embedded Polaro id  technique c o n s i s t s  of bonding 

a p o l a r i z i n g  s h e e t  t o  a t h i n  s l ice  which i s  cast  i n t o  a three-di-  

mensional m o d e l .  The model is  placed i n  a tank and t h e  f r i n g e  

p a t t e r n s  i n  the  embedded shee t  a r e  observed. This technique has  

been used i n  high modulus e l a s t i c  models, however, s p e c i a l  problems 

a r i s e  i n  using t h i s  technique f o r  low modulus e l a s t i c  and visco-  

e l a s t i c  models. 
5 Available po la r i z ing  f i lms  have a modulus of about 10 p s i .  

2 The model ma te r i a l s  of  i n t e r e s t  have moduli i n  t h e  reg ion  of 10 
3 p s i  t o  10 ps i .  The p o l a r i z i n g  f i l m  t hus  cannot be placed d i r e c t -  

l y  i n t o  these  models without  d r a s t i c a l l y  a l t e r i n g  t h e  stress f i e l d  

when t h e  model i s  s t r a i n e d .  However, t h e  r e i n f o r c i n g  e f fec t  of 

t h e  po la r i z ing  f i lm  can be cons iderably  reduced i f  it is  divided 

i n t o  very small  pieces with spaces  between t h e  p ieces .  

niques for c u t t i n g  and applying t h e  p o l a r i z i n g  f i lm  w i l l  be de- 

Two tech- 

. 

Y 
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sc r ibed  and the performance of a model having a f i n e l y  divided 

p o l a r i z i n g  f i l m  bonded t o  it w i l l  be presented  below. 
4 

1 

10.1. POLAROID PREPARATION 

A p o l a r i z i n g  f i lm  incorporat ing & compensation (Polaroid 

HNCP 37) w a s  used f o r  t h e s e  experiments. The p o l a r i z i n g  shee t ,  as 

received from the  manufacturer,  c o n s i s t s  of a p o l a r i z i n g  f i l m  

0.0025 inches t h i c k  sandwiched between t r a n s p a r e n t  s h e e t s  of p l ex i -  

g las .  I f  t h e  p o l a r i z i n g  s h e e t  is  immersed i n  dichloromethane, t h e  

P l e x i g l a s  w i l l  s o f t e n  and may be scraped off t h e  po la r i z ing  fi lm. 

Two or t h r e e  immersions may be requi red  t o  remove t h e  P lex ig l a s  

completely.  The f i l m  may tend t o  c u r l  and is  best stored under a 

weighted f l a t  sur face .  

METHOD I. 

The f i l m  i s  sliced i n  t h e  j i g  shown i n  Figure 24. A s h e e t  of 

0.010 l a t e x  rubber (den ta l  dam) i s  bonded t o  t h e  p l a t e n  and the  

p o l a r i z i n g  f i lm  is  bonded t o  t h e  rubber wi th  con tac t  cement. The 

s l i c i n g  head has  four  razor  blade knives  clamped between ba l l  bear- 

ing  rollers. The rollers serve t o  hold t h e  f i l m  as the  knives 

slice through t h e  fi lm. The s l i c i n g  head i s  guided by t h e  index- 

i n g  T-square of t h e  s l i c i n g  j i g .  The f i l m  can thus  be s l i c e d  i n t o  

uniform ribbons.  

pea ted ,  leaving t h e  po la r i z ing  f i l m  s l i c e d  i n t o  uniform squares.  

The p l a t e n  i s  r o t a t e d  90' and t h e  process  ,re- 

The rubber s h e e t  i s  then peeled f r o m  t h e  p l a t en .  The rubber 

s h e e t  is placed on a f l a t  sur face  and uniformly s t r e t c h e d  t o  g e t  
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t h e  des i r ed  spacing between t h e  squares.  The area around t h e  patch 

of Polaro id  squares i s  coated with an appropr ia te  release agent  

(polyvinyl  alcohol or  Hysol AC4-4368 mold release agen t ) .  

The squares are bonded t o  t h e  s h e e t  of model material using 

an uncured mixture of t h e  model m a t e r i a l  i t s e l f  as t h e  adhesive.  

The use of a high modulus adhesive would i n t e r f e r e  considerably 

wi th  t h e  s t r e s s  d i s t r i b u t i o n  i n  t h e  model. The a rea  t o  be bonded 

is coated w i t h  adhesive and placed a g a i n s t  t h e  Polaro id  patch and 

allowed t o  cure.  After  cure ,  t h e  rubber s h e e t  may be peeled o f f  

leaving t h e  squares on t h e  model. 

Polaroid f i lm  may be bonded t o  t h e  oppos i te  s i d e  of t h e  model 

s l ice  i n  t h e  same manner e f f e c t i n g  a t r a n s m i s s i o n  polar iscope.  An 

a l t e r n a t i v e  procedure is  t o  coa t  t h e  oppos i te  s i d e  of t h e  s l ice  

wi th  a r e f l e c t i n g  ma te r i a l .  This procedure has  t h e  advantage of 

doubling t h e  number of isochromatic f r i n g e s  observed. A f i lm of 

aluminum deposited by vacuum has  been s u c c e s s f u l l y  used f o r  a re- 

f l e c t o r .  I f  the  f i lm  i s  very t h i n ,  many smal l  c racks  w i l l  form 

when it i s  loaded, des t roying  i t s  r e i n f o r c i n g  e f f e c t .  

This s l i c i n g  method has  t h e  advantage of  be ing  able t o  a d j u s t  

t h e  spacing between t h e  squares  of Polaro id .  The s e v e r a l  ope ra t ions  

involved, however, t ake  t i m e  and technique. Method I1 has  proven 

t o  be a more reliable approach f o r  most tests. 

METHOD 11. 

A polar iz ing  f i lm  is prepared and bonded d i r e c t l y  t o  t h e  model 

with an adhesive c o n s i s t i n g  of t h e  mixture  used t o  c a s t  t h e  model 
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material i t se l f .  The use of such an adhesive is  e s s e n t i a l  t o  in-  

s u r e  homogeneity of t h e  f i n a l  model. C a r e  must be taken t o  in su re  

t h a t  t h e  f i l m  is bonded smoothly t o  t h e  model. The adhesive m i x -  

t u r e  should be deaerated i n  a vacuum and t h e  f i l m  appl ied  t o  t h e  

model and r o l l e d  t o  force  out trapped air. The adhesive is first 

allowed t o  cu re  a t  a temperature s l i g h t l y  above room temperature 

and then  cured a t  i t s  normal schedule. I f  t h e  m o d e l  is  placed d i -  

r e c t l y  i n  a h o t  oven, small  bubbles w i l l  form between t h e  po la r i z -  

ing  fi lm and t h e  model. 

The po la r i z ing  f i l m  is c u t  i n t o  squares  with t h e  apparatus  

shown i n  Figure 25. The c u t t i n g  head c o n s i s t s  of a gang of t e n  

s l i t t i n g  saws 0.2 inches a p a r t  and each 0.006 inches t h i c k  mounted 

on a mandrel i n  a v e r t i c a l  m i l l .  The model i s  fastened t o  a f l a t  

angle  bracket with double coated tape.  The s a w s  are s e t  deep 

enough t o  c u t  through t h e  f i l m  and 0.001 t o  0.003 inches i n t o  t h e  

model. A mandrel speed of 2700 r p m  and a feed of 5 inches/minute 

set t o  climb m i l l  w o r k s  very w e l l .  The  s l o t s  c u t  i n t o  t h e  s h e e t  

do n o t  i n t e r f e r e  with t h e  model behavior as they are subsequently 

f i l l e d  w i t h  model m a t e r i a l  when t h e  s h e e t  i s  cast i n t o  t h e  f i n a l  

three-dimensional model. 

10.2 CALIBRATION 

A c a l i b r a t i o n  test w a s  performed on a Hysol 4485 p l a t e  wi th  a 

h o l e  (Figure 2 6 ) .  One p a r t  o f  the  model w a s  covered wi th  bonded 

P o l a r o i d  squares  and a symmetrical p a r t  was l e f t  undisturbed f o r  

viewing i n  convent ional  polar ized l i g h t .  The model w a s  loaded i n  
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t ens ion  and the maximum f r i n g e  order a t  t h e  edges of the ho le  w a s  

observed. 

The f r i n g e  order w a s  the  same i n  the  bonded Polaro id  region as it 

was i n  t h e  undisturbed region,  thus  i l l u s t r a t i n g  t h a t  t h e  e f f e c t  

of t h e  bonded Polaroid squares is  s u f f i c i e n t l y  small .  

The f r i n g e  order  a t  t h e  edges of  t h e  ho le  was observed. 

Figure 27 shows a cy l inder  of v i s c o e l a s t i c  m a t e r i a l  i n  a 

P lex ig l a s  case w h i c h  has  been instrumented w i t h  sheets having pola- 

r o i d  squares  bonded t o  both sides. 
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Figure 1. Photoviscoelastic Bench 
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Figure  2.  Tens i l e  Creep Apparatus 
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10,500 sec. 

F igure  4. P l a t e  w i t h  H o l e ,  L i g h t  F i e l d .  
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1 2  sec. 28 sec. 48 sec. 

100 sec. 870 sec. 1260 sec. 

2160 sec. 4320 sec. 12 ,300  sec. 

Figure 6. Plate with Unbonded R i g i d  Inclusion, Light Field. 
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a = - 2 O O  a = -10' a = -8' a = -4' 

a = 0' a = 10' 0 a = 4  a = 20' 

F i g u r e  7 .  P l a t e  with Bonded 'Rig id  Inc lus ion ,  I s o c l i n i c s .  
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20 sec. 50 sec. 

700 sec. 

i 

100 sec. 300 sec. 

2000 sec. 5100 sec. 18,500 sec. 

Figure 8. Plate with Bonded Rigid Inclusion, 
Isochromatics, Light Field. 
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0 a =  0 a. = 5 O  a = 12' 
I 

a = 22' 

Figure  11. P la t e  w i t h  Bonded Hysol D i s c ,  I s o c l i n i c s .  
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Figure 1 2 .  Plate with Bonded Hysol Disc, 
Isochromatics, Light Field. 

-30- 

A 



. 

I 

I 

i 1 

L 

m 
0 

0 

n 0 
c 

(Y 
0 

0 - 
U 

t 

Ln 0 

. .  
-31- 



0 
N 0 rc) 0 

n 

W z 
l- 

a 
al a 
c 
0 
m 

f I 1 I I 
I I 

1 I 
I 1 

r I 
I 

I 

I 
I 1 

. -32- 



A )  Latex Diaphragm 

B)  P l e x i g l a s s  Plates 

F igu re  15. Edge P res su re  Loading J i g .  
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a) Complete Specimen 

P res su re  

Bonded 

b) Center  Region Enlarged 

F igure  17 .  Edge Loaded C a l i b r a t i o n  Model. 
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t = 5 sec. t = 30 sec. t = 10,000 sec. a b 

- 7 O  
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3 O  
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13' 

Figure 2 0 .  Edge Pressurized, Non-Homogeneous Plate, Isoclinics. 
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Figure 2 1 .  Edge Pressurized, Non-Homogeneous Plate, 
Isochromatics. 
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, -  

a)  S l i c e d  f i l m  on rubber  sheet. 

b) S l i c i n g  head. 

c)  P l a t e n .  

d )  Indexing T-square. 

F igure  24 .  Polaroid S l i c e r .  
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Figure  25. Gang Saw for S l i c i n g  Polaro id  Film. 
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Figure 26. Calibration Model. 
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a 

b 

Figure 27 .  Three Dimensional Model wi th  
Imbedded Polar i scope .  

-45- 



C. HEATED CIRCULAR DISK 

by 
T. A. Johnson 

The change i n  stress wi th  t i m e  i n  a c i r c u l a r  viscoelastic.  

p l a t e  w i th  a c i r c u l a r  h o l e  subjec ted  t o  a s teady  non-uniform t e m -  

p e r a t u r e  d i s t r i b u t i o n  and a uniform p res su re  d i s t r i b u t i o n  on t h e  

o u t e r  boundary w a s  determined by t h e  analog method. 

The loading j i g ,  t e s t i n g  appara tus ,  and experimental  procedure 

w a s  i d e n t i c a l  t o  t h a t  descr ibed  i n  t h e  l a s t  s t a t u s  report '  and de- 

par tmenta l  r e p o r t 2  except  as  follows: 

(1) The r e s i s t a n c e  w i r e  h e a t e r  w a s  c i r c u l a r ,  i n s t e a d  o f  s ta r -  

Shaped, t o  conform t o  t h e  c i r c u l a r  p o r t .  

( 2 )  The latex diaphragm had no slack, f i t t i n g  t h e  model l i k e  a 

gaske t ,  b a r e l y  touching it i n  t h e  undeformed s ta te .  Hence, u n l i k e  

t h e  previous tes ts  on t h e  s t a r - g r a i n  model, t h e  diaphragm had t o  

s t r e t c h  t o  follow t h e  deforming material .  

( 3 )  An e lec t r ic  t i m e  counter  w a s  p laced  over t h e  specimen, 

allowing t h e  f r i n g e  p a t t e r n  and t i m e  t o  be recorded on t h e  same 

f i l m .  (See Figure 1). 

The motivat ion f o r  t h i s  r e v i s e d  des ign  w a s  t o  f a c i l i t a t e  con- 

s t r u c t i o n  of t h e  diaphragm i t s e l f  and t o  e f f e c t  a m o r e  uniform 

' D i l l  and Bollard,  "Photothermoviscoelasticity S t a t u s  Report ,  'I 
Department of Aeronautics and As t ronau t i c s ,  Un ive r s i ty  of 
Washington, Ju ly  1965. 

of Aeronautics and Ast ronaut ics ,  Un ive r s i ty  of Washington, Septem- 
ber 1965. 

2 D i l l  and Fowlkes, " P h o t o v i s c o e l a s t i c i t y ,  'I Report 65-1, Department 
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pres su re  on t h e  o u t e r  boundary than had been obtained previously.  

1 -  I n  comparing wi th  t h e  previous diaphragms, it appeared t h a t  t h e  

s t r e t c h i n g  of  t h e  latex d i d  not a f f e c t  t h e  l i n e a r i t y  of a c t u a l  

pressure  i n  t h e  model versus  gage pressure  of t h e  diaphragm. I t  is  

a l s o  i n t e r e s t i n g  t h a t  t h e  pressure  e f f i c i e n c y  of  t h e  j i g  w a s  72%# 

1 which i s  i n  t h e  range of  t h e  e f f i c i e n c i e s  of  68-75% previous ly  ob- 

I t a ined .  

I As Figure 1 shows, t h e  pressure  w a s  uniform on the boundary; 

~ 

t h i s  is indica ted  by t h e  concent r ic  cha rac t e r  of t h e  f r i n g e  p a t t e r n .  

The model w a s  heated to  an axially-symmetric s teady-s ta te  

temperature.  The r a d i a l  v a r i a t i o n  of temperature i s  shown i n  Fig- 

u r e  2. The p res su re  w a s  suddenly appl ied  t o  the o u t e r  edge. The 

v a r i a t i o n  of f r i n g e  order a t  a p o i n t  on t h e  inner  boundary is 

shown i n  Figure 3 for t w o  d i f f e r e n t  appl ied  pressures .  The stress 

on t h e  inner  boundary w a s  then determined by t h e  analog method 
0 

(Figure 4 ) .  

The stress on t h e  inner  boundary was expected t o  be smaller 

a t  s h o r t  t i m e s  because of t h e  h igher  ra te  of r e l a x a t i o n  i n  the 

h o t t e r  material. The stress should then  tend t o  the e l a s t i c i t y  

s o l u t i o n .  The r e s u l t  has  t h i s  property.  

The purpose of t h i s  test w a s  t o  compare an experimental  solu- 

t i o n  w i t h  an a n a l y t i c a l  so lu t ion  for s o m e  non- t r iv i a l  thermovisco- 

e l a s t i c  problem. The a n a l y t i c a l  s o l u t i o n  is, however, n o t  y e t  

I -  I .  

complete. 
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Figure  1. Fr inge  P a t t e r n  f o r  Heated D i s k .  
( run  2 ,  99.4 seconds)  
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D. FARADAY CELL POLARISCOPE 

by 
M. E. Fourney 

I n  t h e  genera l  p h o t o e l a s t i c  o r  pho tov i scoe la s t i c  problem, t h e  

d i r e c t i o n  of t h e  p r i n c i p a l  stresses must be determined. This i s  

gene ra l ly  done by observing t h e  i s o c l i n i c s  f o r  va r ious  angles  while  

t h e  loading and s t r a i n  f i e l d  remain cons tan t .  The i s o c l i n i c  i s  t h e  

locus  of po in t s  having cons t an t  i n c l i n a t i o n  o f  p r i n c i p a l  axes of 

t h e  d i e l e c t r i c  tensor .  They are obtained by t r a n s m i t t i n g  l i n e a r  

po la r i zed  l i g h t  through t h e  model. By changing t h e  d i r e c t i o n  of 

p o l a r i z a t i o n  of t h e  l i g h t ,  one can f i n d  t h e  d i r e c t i o n  of  t h e  p r i n c i -  

p a l  axes f o r  a l l  p o i n t s  i n  t h e  model. 

For an e las t ic  material under c o n s t a n t  loads ,  t h i s  can e a s i l y  

be achieved by manually changing t h e  p l ane  of  p o l a r i z a t i o n  of t h e  

l i g h t .  For dynamic loading or v i s c o e l a s t i c  stress f i e l d s  t h a t  are 

slowly varying func t ions  of t i m e ,  a mechanical r o t a t i n g  element 

polar i scope  has been designed and b u i l t .  This  has been descr ibed  

i n  some d e t a i l  i n  t h e  s t a t u s  r e p o r t  o f  July 1965. For m o r e  r a p i d  

dynamic loads o r  f o r  s h o r t  t i m e s ,  when t h e  stress f i e l d  for visco-  

e las t ic  ma te r i a l  i s  a r a p i d l y  vary ing  f u n c t i o n  of t i m e ,  a Faraday 

c e l l  polar iscope has  been designed. The Faraday c e l l  i s  an electro- 

o p t i c  device: it has t h e  i n h e r e n t  a b i l i t y  t o  a l te r  t h e  p l ane  of 

p o l a r i z a t i o n  of t h e  observing l i g h t  a t  ve ry  h igh  speeds. 

The Faraday E f f e c t  c o n s i s t s  of  a r o t a t i o n  o f  t h e  p l ane  of 

p o l a r i z a t i o n  by  an app l i ed  magnetic f i e l d .  ' T h e  r o t a t i o n  i s  propor- 

t i o n a l  t o  t h e  path l eng th  i n  t h e  medium and t o  t h e  component of  t h e  
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c 
magnetic f i e l d  i n  t h e  d i r e c t i o n  of  propagation. The angle  of ro- 

t a t i o n  is given by 

a = VBd 

where B is  t h e  component of t h e  magnetic f i e l d  i n  t h e  d i r e c t i o n  of 

propagation, d i s  t h e  path length,  and V i s  t h e  Verdet constant .  

Conventionally,  p o s i t i v e  Verdet cons t an t  means t h a t  t h e  p lane  

of p o l a r i z a t i o n  i s  r o t a t e d ,  by passage through the m e d i u m ,  i n  the  

same sense as t h e  d i r e c t i o n  o f  f law of p o s i t i v e  electric c u r r e n t  

f lowing i n  a solenoid which could produce t h e  magnetic f i e l d .  The 

r o t a t i o n  i s  i n  the same sense for either d i r e c t i o n  of propagation 

of t h e  l i g h t .  Hence, t h e  r o t a t i o n  could be mul t ip l i ed  by r e f l e c t i n g  

t h e  l i g h t  several t i m e s  through t h e  a c t i v e  medium. 

When l i g h t  i s  t ransmi t ted  through a medium it i s  absorbed 

according t o  t h e  r e l a t ion :  
-kx ~ ( x )  = Ioe 

w h e r e  k i s  the absorpt ion c o e f f i c i e n t .  Both the V e r d e t  cons tan t  

and t h e  absorpt ion c o e f f i c i e n t  are func t ions  of the wavelength of  

l i g h t .  

A convenient arrangement for a Faraday c e l l  is t o  p l ace  t h e  

active material  i n s i d e  a solenoid.  The s e l e c t i o n  of t h e  a c t i v e  

m a t e r i a l  is  based on a h igh  value of  t h e  Verdet cons t an t  b u t  l o w  

va lue  of absorpt ion coe f f i c i en t .  The m a t e r i a l  t h a t  has  been selec- 

ted is  a high d e n s i t y  lead glass .  The cons tan ts  o f  t h i s  g l a s s  are 

. 
given  by t h e  s u p p l i e r  as follows: 

v = 0.109 min/cm - gauss,  
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1/10 = 97.5% / i n ,  

For = 70OOAO. 

Two g la s s  rods 10 inches long wi th  a square c ross -sec t ion  one 

inch on a s i d e  w e r e  obtained and t h e  ends pol ished.  

w a s  wound t o  supply t h e  requi red  magnetic f i e l d .  

both t h i s  solenoid and t h e  g l a s s  rod. 

2.2' of r o t a t i o n  per  ampere for t h e  mercury green l i n e .  

A solenoid 

Figure 1 shows 

The c e l l  w a s  found t o  g ive  

A small  amount of  r e s i d u a l  s t r a i n  w a s  observed i n  t h e  rod 

when placed i n  a polar i scope;  however, it i s  n o t  l a r g e  enough t o  

cause se r ious  d i s t o r t i o n  of an image t h a t  i s  t r ansmi t t ed  through 

t h e  rod. 

The solenoid has  been cons t ruc ted  i n  a manner t o  keep the  in-  

ductance l o w  so t h a t  t h e  switching of t h e  c e l l  could be rapid.  

inductance of the solenoid i s  14.7 m i l l i h e n r i e s .  

The 

A polar iscope i s  under cons t ruc t ion  t h a t  w i l l  u t i l i z e  t h e  

Faraday ce l l  as  an element t o  r o t a t e  t h e  p lane  of p o l a r i z a t i o n  of 

the l i g h t .  The purpose and genera l  cons t ruc t ion  f e a t u r e s  w i l l  be 

s i m i l a r  t o  t h e  r o t a t i n g  element po la r i scope  previous ly  discussed.  

The major d i f f e rence  w i l l  be t h e  speed of r o t a t i o n .  I n  t h e  Fara- 

day ce l l  polar iscope,  t h e  only l i m i t a t i o n  i s  the speed w i t h  which 

t h e  magnetic f i e l d  of t h e  so lenoid  can be a l t e r e d .  

A genera l  schematic diagram of t h e  Faraday ce l l  polar i scope  

i s  shown i n  Figure 2. 
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Figure  1. Faraday Cell Glass Rod and Solenoid .  
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E. NON-LINEAR PHOTOMECHANICS 

by 
P. Ramanaiah 

1 INTRODUCTION 

One of the main problems of a structural engineer is the pre- 

diction of the strength and deformation characteristics of various 

structures made of different types of materials. With the tremen- 

dous advancement of industry, more and more materials of widely 

differing characteristics are being used as structural materials. 

These materials cannot be adequately treated by the usual linear 

elasticity theory. For example, rubbers used in industry behave 

non-linearly in their stress-deformation characteristics. High 

polymers, used extensively as part of solid propellants for rockets, 

have time dependent mechanical behavior. In order to keep pace 

with the industry, the modern engineer is forced to deal with such 

materials. 

The stress analysis of a structure, even with simple constitu- 

tive equations such as classical linear elasticity, becomes very 

complicated if the shape of the structure is irregular. If the 

constitutive equation is non-linear, the problems of stress analysis 

almost defy any analytical solution except for some very simple 

body shapes and types of loading. In such cases, it is desirable 

to have an experimental procedure to find the stresses in the body. 

There are several such methods, but we are mainly concerned with 

the generalization of the method of experimental stress analysis 

known as photoelasticity. 
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When certain t r anspa ren t  materials a r e  s t r a i n e d ,  they become 

doubly r e f r a c t i v e  and the re fo re  e x h i b i t  f r i n g e  p a t t e r n s  when placed 

between polaroids .  Such ma te r i a l s  are c a l l e d  b i r e f r i n g e n t .  Photo- 

mechanics i s  based on t h e  assumption t h a t  t h e  b i r e f r ingence  exhib- 

i t e d  by a ma te r i a l  depends upon t h e  s t r a i n  it has undergone. 

s o l u t i o n  of a stress a n a l y s i s  problem can be determined experimen- 

t a l l y  i n  t h e  following way. A model i s  cons t ruc ted  from the  bire- 

f r i n g e n t  ma te r i a l  and loaded. The b i r e f r ingence  is recorded. The 

r e l a t i o n  between b i r e f r ingence  and s t r a i n  or stress then g ives  in- 

formation about the s o l u t i o n  t o  t h e  problem. 

The 

This procedure has  been used f o r  s o m e  t i m e  f o r  the s o l u t i o n  of 

l i n e a r  e l a s t i c i t y  problems [l]. More r e c e n t l y  t h e  s o l u t i o n  of 

l i n e a r  v i s c o e l a s t i c i t y  problems has  been obtained i n  t h i s  way [21-  

[91. There w e r e  a l s o  at tempts  t o  extend the  method t o  the case  of 

m a t e r i a l s  i n  an e l a s t i c - p l a s t i c  s t a t e .  See [101-C121. 

T h e  theory presented by Mindlin [ 2 1 8  Read [3 ]#  and D i l l  [41 
presumes the  mechanical-optic r e l a t i o n  t o  be s i m i l a r  t o  the  stress- 

s t r a i n  r e l a t i o n  f o r  v i s c o e l a s t i c  materials. Their work i s  l i m i t e d  

t o  s m a l l  displacement grad ien ts .  

and Thomson El01 and Monch and Loreck [ll] are mainly experimental  

and they are marked by t h e  absence of any t h e o r e t i c a l  i n v e s t i g a t i o n  

of t h e  rheo-optic re la t ion2  used. I t  is  n o t  a t  a l l  obvious how t h e  

' N u m b e r s  i n  square bracke ts  i n d i c a t e  t h e  r e fe rences  l i s ted  a t  t h e  

The i n v e s t i g a t i o n s  made by Frocht  

end o f  t h e  report .  

'The t e r m s  rheo-optic r e l a t i o n ,  photo-mechanical r e l a t i o n ,  and 
mechanical-optic re la t ion  are used synonymously. B y  t h i s  w e  mean 
a c o n s t i t u t i v e  equation r e l a t i n g  stress or deformation t e n s o r s  t o  
t h e  r e f r a c t i o n  or  r e l a t e d  tensors .  
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rheo-optic constitutive equations obtained by them from simple ex- 

periments can be generalized to more complicated situations, espe- 

cially when the equations are non-linear. 

is theoretical in nature and is based on the proposition that the 

dielectric constants of a solid depend upon elastic and plastic 

strains of the material. We believe that this proposition is very 

restrictive and the resulting theory has limited, if any, applica- 

tion. 

The work of Tokouka E121 

Any rational extension of the existing methods of stress analy- 

sis by photo-methods to a more wider class of problems can be 

achieved only by establishing a rigorous general theory of photo- 

mechanical constitution equations. The aim of the present article 

is to establish such a theory. We shall make use of the methods 

recently used successfully in the theory of non-linear mechanical 

constitutive equations, especially the concept of fading memory 

first proposed by Coleman and ~011 [131. We derive, in Chapter 5, 

a very general photo-mechanical constitutive equation satisfying 

the proper invariance requirements. The existing linear theories 

of photo-mechanics (photoelas tic ity and photoviscoe las tic ity ) are 

shown to be special cases of the general theory as presented in 

this article. A theoretical basis for non-linear photoviscoelas- 

ticity and non-linear photoelasticity is therefore established. 

Finally, we show that the theory of photoplasticity as was presented 

in References El03 and [11] is no more than non-linear photoelastici- 

tY 
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2. GENERAL PRINCIPLES 

2 . 1  KINEMATICS C151 

The motion of a material continuum can be descr ibed by speci-  

fying t h e  motion of  each of i t s  p a r t i c l e s .  Consider a material 

p a r t i c l e  X occupying p o s i t i o n  5 i n  t h e  re ference  conf igura t ion .  

As t i m e  proceeds, t h i s  m a t e r i a l  p a r t i c l e  occupies d i f f e r e n t  posi-  

3 

t i o n s  i n  space. 

and 7 ( 7 C t )  respec t ive ly ,  where t is  t h e  p re sen t  t i m e .  The coordi- 

Suppose it occupies p o s i t i o n s  X, and 5 a t  t i m e s  t 

n a t e  systems used t o  describe the conf igu ra t ions  a t  d i f f e r e n t  t i m e s  

may be d i f f e r e n t  and c u r v i l i n e a r  i n  general .  Then the  motion of 

t h i s  gener ic  par t ic le  X can be descr ibed by 

5 = $Q$W ( 2 . 1 : l )  

The g rad ien t  of cy 5 with  r e spec t  t o  X, is  c a l l e d  t h e  deformation 

g rad ien t  a t  t h e  m a t e r i a l  po in t  X and t i m e  7 

F ( X , T )  = vx 5(5,% (2.1:2) 
N N  

N 

w h e r e  Ox i n d i c a t e s  g rad ien t  with r e s p e c t  t o  5. It  i s  important 
h) 

t o  note  h e r e  t ha t  t h e  deformation g r a d i e n t  n o t  only depends on t h e  

conf igura t ion  a t  t ime 7, b u t  a l s o  i s  a func t ion  of the r e fe rence  

conf igura t ion .  

I n  t h e  mechanics of continuous media, one of the  fundamental 

p r i n c i p l e s  i s  the  permanence of matter. According t o  t h i s  pr in-  

c i p l e ,  no region of f i n i t e  p o s i t i v e  volume i s  deformed i n t o  one of 

3We w i l l  use the  symbol "-" under le t ters  t o  denote v e c t o r s  and 
tensors .  The words t enso r  and " l i n e a r  t ransformat ion  from a three-  
dimensional Euclidean vec tor  space i n t o  i t s e l f "  are used synony- 
mously throughout t h i s  paper.  
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zero, i n f i n i t e  or negat ive volume. For t h i s  condi t ion  t o  be t r u e ,  

it is  necessary and s u f f i c i e n t  tha t  

. 

( d e t d  > 0 (2.1:3) 

I n  o the r  words, f o r  any motion that  does n o t  v iolate  t h e  p r i n c i p l e  

of  t h e  permanence of matter, t h e  matrix of t h e  deformation g r a d i e n t  

is  nonsingular a t  a l l  times. This implies t h e  above matrix is  in-  

v e r t i b l e .  

According t o  t h e  po la r  decomposition theorem of algebra, f o r  

any i n v e r t i b l e  t enso r  E t h e r e  is a unique orthogonal tensor  E and 

unique p o s i t i v e  d e f i n i t e  symmetric t e n s o r s  2 and such t h a t  

N F = N  

N F = D .  
or 

(2.1:4) 

(2.1:5) 

Geometrically t h i s  implies  t h a t  any deformation from one configur-  

a t i o n  t o  another can be resolved uniquely i n t o  a pure s t r e t c h  

followed by a r o t a t i o n  E or i n t o  a r o t a t i o n  B followed by a pure 

s t r e t c h  R. The t e n s o r s  XI and are called r i g h t  and l e f t  s t r e t c h  

t e n s o r s  r e spec t ive ly .  I n  order to c a l c u l a t e  17, E, and E, we make 

use of t h e  r e l a t i o n s  
U 2 = F F = s  T 
N N H  

U = R'VR . 
N N M I  

(2.1:6) 

(2.1:7) 

(2.1:8) 

where t h e  s u p e r s c r i p t  "T" i n d i c a t e s  the transpose.  From t h e  above 

equat ions ,  we can see t h a t  t h e  c a l c u l a t i o n  of t h e  squares  of  t h e  

stretch t enso r s  is  much easier than  t h e  c a l c u l a t i o n  of Q and 

themselves.  

cance and t h e s e  are called t h e  r i g h t  and l e f t  Cauchy-Green t enso r s  

r e s p e c t i v e l y  . 

Hence, t h e  tensors  C and B have a s p e c i a l  s i g n i f i -  
N H 
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I so f a r  we have pu t  no r e s t r i c t i o n s  on t h e  magnitudes of the 

deformation gradien ts  o r  var ious  o the r  t enso r s  def ined  i n  t e r m s  

of them. Later on w e  w i l l  have occasion t o  t a l k  about i n f i n i -  

tesimal deformations. I n  order  t o  d i scuss  t h e  connection between 

t h e  f i n i t e  and i n f i n i t e s i m a l  deformations,  we de f ine  the magnitude 

of a tensor  by 

(2.1:9) 

where t r  denotes the  t r ace .  

The displacement g rad ien t  E i s  def ined by 

N H E  E-& . ( 2 . 1 : l O )  

e =  syp 1€3(T)1  . (2.1:11) 

L e t  us  def ine a q u a n t i t y  8 by 

W e  say t h a t  a deformation is  i n f i n i t e s i m a l  provided t h a t  a t  a l l  

t i m e s  T < t 

€ < < 1 .  (2.1:12) 

W e  def ine  t h e  ( i n f i n i t e s i m a l )  s t r a i n  t enso r  N E (7) and t h e  

( i n f i n i t e s i m a l )  r o t a t i o n  tensor  E(T)  r e s p e c t i v e l y  by the equat ions 

and 
(2.1:13) 

(2.1:14) 

The r i g h t  and l e f t  s t r e t c h  t enso r s  and t h e  Cauchy-Green t e n -  

sors are funct ions of 7 determined by H ( T ) .  W e  w i l l  say t h a t  a 

func t ion  f of T is of t h e  order of magnitude en i nd ica t ed  by O ( e n )  8 

if t h e r e  e x i s t s  a cons tan t  K independent of 7 such  t h a t  

c1 

l f ( ' T ) 1  < Ken  . (2.1:15) 

W i t h  t h i s  no ta t ion  we would l i k e  t o  determine the order of magni- 

tude of var ious t enso r s  determined by H(T)  when g(T) = O ( S ) :  
N 
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L F = I + 
-1 2 
N F = I - H + O ( € )  N H  

= I + O(€) 

= z + O ( S )  N H  

H 

U = I + E + O ( E Z )  

V = I + E  + O ( C  ) 

N N N  

2 
" N  

C = I + 2E N + O ( e " )  

N C Y  B = I + 2 E + O ( s )  H . 
N N  

2 

From the equation ( 2 . 1 : 4 )  we have 
2 R = I + W + O ( s ) .  

N C Y N  

( 2 . 1 : 1 6 )  

( 2 . 1 : 1 7 )  

(2 .1 :18)  

( 2 . 1 : 1 9 )  

( 2 . 1 : 2 0 )  

( 2 . 1 : 2 1 )  

( 2 . 1 :  22)  

It is sometimes useful to employ the present configuration as the 

reference configuration. We will indicate quantities computed on 

this basis by subscript t. Since 

( 2 . 1 : 2 3 )  
ly N N  

g(7) = % ( 7 ) g t )  . ( 2 . 1 :  24)  

Hence, 4 F (7) = FJT)f'(t) ( 2 . 1 :  25)  

and -t F (t) = c(t) F"(t) H = N I ( 2 . 1 : 2 6 )  

Knowing F (7) we can calculate the relative right and left stretch 

tensors and the relative Cauchy-Green tensors. For example, 
t 

( 2 . 1 : 2 7 )  

2.2 FIELD EQUATIONS OF MECHANICS 

The science of mechanics is based on such notions as motion, 
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4 momentum, and stress . Common experience with mechanical processes 

shows that certain facts are always true. These facts are form- 

ulated as general physical principles in the mathematical form of 

field equations. These field equations are valid for all materials. 

The purely mechanical processes which we now consider are governed 

by the following principles: 

1. Conservation of mass 

2. Conservation of linear momentum, and 

3 .  Conservation of moment of momentum. 

For the derivation of the field equations expressing these physical 

principles, the reader is referred to [14]. We will only enumerate 

these field equations below. 
i 

Conservation of mass : 

6 + pdiv; = 0 , 
N 

(2.2:l) 

where p is the density of the material and the superposed dot in- 

dicates material derivatives with respect to time. 

, Conservation of linear momentum: 
*. divT + pb = ps (2.2:2) 

N N 

where is the Cauchy stress tensor and b is the body force per 

unit mass. The stress tensor T is related to the basic concept 

of stress vector t on a surface whose unit normal is z b y  

N 

N 

- 

4We will consider only simple mechanical processes here. We will 
completely ignore considerations such as temperature, body couples, 
and couple stresses. We will consider electromagnetic and mechan- 
ical interactions subsequently. 

-64- 



. 

Conservation of moment of  momentum: 

(2.2:3) 
T = E  T . 
N 

W e  must add appropr i a t e  boundary condi t ions  t o  these equa- 

I f  S i s  t h e  boundary of t h e  body i n  s o m e  conf igura t ion ,  t i ons .  

then t h e  stress boundary condi t ions  restrict t h e  allowable stresses 

by t h e  requirement t h a t  t h e  appl ied t r a c t i o n  vec tor  a t  any p o i n t  on 

t h e  su r face  should be t h e  same as t h e  stress vec tor  a t  t h a t  po in t ,  

i.e., 

Tn = f (x)  on S . (2.2:4) - H r Y  

I n  cases where t h e  shape of  t he  conf igura t ion  i s  r e s t r i c t e d ,  the 

appropr i a t e  boundary condi t ions are t h e  r e s t r i c t i o n s  placed on t h e  

allowable displacements on the boundary 

u = ~ ( 5 )  on S 8 (2.2:s) 
N 

w h e r e  u i s  the  displacement vector  def ined by 
N 

E(58t)2 5(58t) - 5 (2.2:6) 

I n  s o m e  cases, stress boundary condi t ions  are s p e c i f i e d  on p a r t  of 

t h e  boundary and displacement boundary condi t ions  are given on t h e  

rest of t h e  boundary. 

. 

2.3 FIELD EQUATIONS OF ELECTROMAGNETISM 

The f i e l d  equat ions of electromagnetism are der ived  from t h e  

fol lowing phys ica l  p r i n c i p l e s  : 

1. Conservation of  charge, and 

2. Conservation of magnetic f lux.  
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Except on some s ingu la r  su r faces  these  p r i n c i p l e s  lead  t o  t h e  

f i e l d  equations: 5 

Conservation of charge: 

d i v  i + b q  = 0 
a t  

where is  the c u r r e n t  d e n s i t y  and q is  t h e  charge dens i ty .  

Conservation of magnetic f lux :  

Cur l  2 + ab = o 
Ft' 

and 

d i v  b = 0 8 
N 

(2 .3: l )  

(2.3:2) 

(2.3:3) 

where 5 i s  the electric f i e l d  and 2 is t h e  magnetic f l u x  dens i ty .  

The genera l  so lu t ion  of equat ions (2.3:l)  t o  (2.3:3) may be ex- 

pressed i n  t e r m s  of new f i e l d s :  

q = d i v  d . 
N 

j, = Curl  & - ad 
N 

b = Curl  2 
N 

e = - a A  - grad V . 
N -N a t  

(2.3:4) 

(2.3:5) 

(2.3:6) 

(2.3:7)  

Where fi i s  the  charge p o t e n t i a l  (u sua l ly  c a l l e d  e lectr ic  d isp lace-  

ment. ) 

N h is the  c u r r e n t  p o t e n t i a l  (u sua l ly  called magnetic f i e l d  

i n t e n s i t y . )  

N a is the  magnetic p o t e n t i a l .  

v is the electric p o t e n t i a l .  

5FOr a rigorous d e r i v a t i o n  of  t h e  f i e l d  equat ions  f r o m  t h e  con- 
s e r v a t i o n  p r i n c i p l e s  t h e  reader  is r e f e r r e d  t o  [141. 
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These equat ions must be supplemented by t h e  Maxwell-Lorentz 

ae the r  r e l a t i o n s .  

fundamental cons tan ts  e o  and wo which depend only on t h e  u n i t s  of  

length,  t i m e ,  charge and magnetic f l u x  such t h a t  t h e  following re- 

l a t i o n s  are v a l i d  both wi th in  and without  materials: 6 

The ae the r  r e l a t i o n s  p o s t u l a t e  t h a t  t h e r e  exists 

and 
h = l b .  

P O  
N - -  

(2.3:8) 

(2.3:9) 

A l l  t h e  above equat ions are v a l i d  wherever t h e  f ie lds  are continu- 

ous,  b u t ,  across a su r face  of  d i scon t inu i ty ,  such as t h e  boundary 

between regions of d i f f e r e n t  ma te r i a l  p rope r t i e s ,  t h e  f i e l d s  suf-  

fer jumps. 

a su r face  of d i s c o n t i n u i t y  w i t h  unit-normal 28 moving w i t h  speed 

I n  c r d e r  t o  relate t h e  f i e l d s  on both sides, consider  

un. Then the following jump condi t ions  hold: 7 

v x [Eg - u 1.123 = 0 # (2.3:lO) n N 

*: = 0 8 (2.3:11) 

and KAra - u [SJJ = 0 (2.3:12) n 
where the symbol E 1 i n d i c a t e s  t h e  jump i n  t h e  q u a n t i t y  across 

t h e  s u r f a c e  of d i scon t inu i ty .  

It is  customary t o  consider t h e  t o t a l  charge t o  be made up of 

t w o  p a r t s :  

1. qb t h e  

2. qf t h e  

bound charge, and 

free charge. 

U 
W e  f o l l o w  t h e  p o i n t  of view of Toupin 1141. 

7 

‘For a d e r i v a t i o n  of these  jump condi t ions ,  t h e  reader  is  r e f e r r e d  
t o  c141. 

-67- 



Then 

q = q b + q f  (2.3:13) 

The total current is considered to be the sum of three parts: 

1. if the free current, 
2. ip the polarization current, and 
3. the magnetization current: 

then 

J = & + + + & .  (2.3:14) 

The auxiliary charge and currents are defined in terms of the 

polarization E and magnetization E :  

qb = -div , 

and 
= Curl E , 

(2.3:15) 

(2.3:16) 

(2.3:17) 

where is the velocity of the medium. 

Auxiliary potentials N h and 2, which we call partial potentials, 
are defined by 

and 

In terms of the partial potentials, we have 

= Curl - 8 

if at 
and 

qf = div 2 . 
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- .  

The jump conditions for the partial potentials across a surface of 

discontinuity, with normal and apeed un are 

and 
v x  
N 

2.4 MATERIAL INDIFFERENCE 

The field equations, when combined with 

. 
(2.3:22) 

(2.3: 23) 

the jump conditions, 

form an under determined system of equations. This can be expected 

because the equations are valid for all materials and fail to ac- 

count for the characteristics of the particular material under 

study. To make the system of equations determinate, we introduce 

additional equations defining ideal materials. These additional 

equations are called constitutive equations. 

Constitutive equations are often formulated as functional re- 

lations between various state variables. These functionals cannot 

be arbitrarily chosen, but must satisfy some broadly established 

general principles. 8 

The principle variously known as the principle of material in- 

difference, principle of material objectivity, or principle of 

isotropy of space is one such physical principle. It is a state- 

ment of the requirement that "the response of the material is in- 

dependent of the observer," 

Even though implicit use of this principle can be found in 

earlier literature (the reader can find some historical remarks 

For a discussion of these principles the reader is referred to 
C U I .  

8 
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about t h i s  p r i n c i p l e  i n  [15]), t h e  f i r s t  s a t i s f a c t o r y  s ta tement  

is due t o  No11 E161 under t h e  name "Pr inc ip l e  of I so t ropy  of  Space." 

The following s ta tement  of t h i s  p r i n c i p l e  w a s  subsequently given 

by Truesde l l  and No11 [15]: 

Cons t i tu t ive  equat ions must be i n v a r i a n t  under changes of 

frame of reference.  I f  a c o n s t i t u t i v e  equat ion is  s a t i s f i e d  f o r  a 

process cons i s t ing  of a motion and symmetric stress tensor given by 

5 = gz , t )  , (2.4: 1) 

(2 .4:  2) N T = gz , t>  
* *  

then it m u s t  be s a t i s f i e d  a l s o  for any equiva len t  process  {x ,T 3 
given by 

* * * x = 5 (Z , t  1 = Q ( t ) 5 ( 5 , t )  + C ( t )  N # (2.4:3) 

(2.4:4) 

t = t-a (2.4: 5) 

N 

* * * T 
N 'I' = (z,t = Q(t)2S(58t)g(t) , 

* 

where N C ( t )  is an a r b i t r a r y  po in t ,  Q(t)  an a r b i t r a r y  orthogonal 

tensor  valued funct ion of t i m e ,  and an a r b i t r a r y  number. 

The  transformation g ( t )  r ep resen t s  a t i m e  dependent r o t a t i o n  

of the  coordinate  frame, and g ( t )  a t i m e  dependent s h i f t  of t h e  

o r i g i n  of the frame. As an example, cons ider  a t y p i c a l  mechanical 

c o n s t i t u t i v e  equation of t h e  form 
t 

(2.4:6) 

where Zt is a func t iona l  and t h e  s u b s c r i p t  t rep resen t ing  t h a t  

t h e  func t iona l  r e l a t i o n  i s  dependent on t. Then, according t o  the  

p r i n c i p l e  of ma te r i a l  i nd i f f e rence ,  the f u n c t i o n a l  at must be 

such t h a t  
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(2.4 t7) 

under t h e  group of  t ransformations given by (2.4:3) t o  (2.4:5). 

Equation (2.4:7) may also be viewed as s t a t i n g  t h a t  c o n s t i t u t i v e  

func t iona l  r e l a t i o n s  should be t h e  same i n  t w o  r e fe rence  frames 

which have a r e l a t i v e  motion with r e spec t  t o  one another.  

I n  subsequent chapters ,  w e  w i l l  have occasion t o  use t h e  

var ious  k inemat ica l  q u a n t i t i e s  i n  t h e  s t a r r e d  re ference  frame. W e  

w i l l  i n d i c a t e  these  q u a n t i t i e s  by a star as a supe r sc r ip t .  Using 

ord inary  d i f f e r e n t i a t i o n  r u l e s ,  va r ious  kinematical  q u a n t i t i e s  i n  

t h e  starred reference  frame are c a l c u l a t e d  below. Deformation 

g r a d i e n t  E: 

Cauchy-Green t enso r s  C and E: 
N 

= cy F ( t ) T E ( t )  

= N C ( t )  

N C (t) is i n v a r i a n t  under t h e  t ransformation (2.4:3) 
* * 

H B (t) = ( t ) E * ( t ) T  

(2.4: 8) 

(2.4:9) 

( 2.4 : 10) . 
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2 . 5  ISOTROPY 

I n  mechanics of deformable bodies ,  t h e  a d j e c t i v e  " i s o t r o p i c "  

i s  o f t e n  used very loosely.  I t  is  a common p r a c t i c e  t o  say ''a 

material i s  i s o t r o p i c  i f  it does n o t  have any p r e f e r r e d  d i r ec -  

t i o n s . "  This d e f i n i t i o n  is  vague. 

i so t ropy  p rec i se  c161. 

W e  w i l l  make t h e  concept of 

W e  def ine  a material t o  be i s o t r o p i c  if and only if the con- 

s t i t u t i v e  r e l a t i o n  of t h e  material is  i n v a r i a n t  under t he  t r a n s -  

formation of re ference  conf igura t ion :  
** 

N x-x N = P T Z + Z  N (2.5:l) 

** 
T - T  = T  
N N N 

(2.5:2) 

w h e r e  2 i s  an a r b i t r a r y  proper orthogonal t enso r  func t ion  of t i m e  

and 2( t )  an a r b i t r a r y  vec tor .  

i s  called aniso t ropic .  

A material which i s  n o t  i s o t r o p i c  

T h i s  d e f i n i t i o n  has one drawback: t h e  use of  the phrase 

" the  c o n s t i t u t i v e  r e l a t i o n  of t h e  material." An example w i l l  make 

t h i s  c l e a r .  

Consider t h e  following p o s s i b l e  problems involving the  s a m e  

a given appl ied  loading,  and 

Passage of electromagnet ic  waves through a d ie lec t r ic .  2.  

T h e  f i r s t  problem i s  governed by t h e  f i e l d  equat ions  of 

mechanics and t h e  second problem is  governed by t h e  equat ions  of  

electromagnetism. I n  both  cases  w e  should add appropr i a t e  con- 
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. stitutive equations in order to solve the problem. In the first 

problem, the constitutive equation relating the stress and strain 

tensor is the one we should add, whereas in the second case the 

equation relating the electric field and electric displacement is 

the appropriate one. Hence, the phrase "the constitutive relation 

of the material" is meaningful only when the problem under con- 

sideration is specified. 

This drawback in definition can be avoided by defining mech- 

anical isotropy, electromagnetic isotropy, etc., separately. For 

example, we define a material to be mechanically isotropic if and 

only if the mechanical constitutive relation of the material is 

invariant under the transformation ( 2 . 5 : l ) .  Whenever the situa- 

tion does not make it clear, we will specify the type of isotropy 

under consideration. A material may be isotropic in certain re- 

spects and anisotropic in other respects. For example, mechanical 

isotropy does not necessarily imply electromagnetic isotropy of a 

material. In later sections we will have occasion to talk about 

such materials. 

The various kinematical quantities under the transformation 

of the reference configuration given by equation (2.5:l) can be 

easily calculated using ordinary rules of differentiation. Fol- 

lowing are the calculations of some of these kinematical quan- 

tities, where the superscript "double star" is used to indicate 

them. 
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Deformation g rad ien t  E: 
N F**(t) = vx** z(X,t) 

N 

= N F ( t ) g ( t )  

Cauchy-Green t enso r s  g and N B: 
** ** T ** 

N c (t) = g (t) (t) 

= N B ( t )  - 
N B (t) is i n v a r i a n t  under the t ransformat ion  ( 2 . 5 : l ) .  

L e f t  S t r e t c h  tensor  x: 

= N V ( t ) 9  

N V ( t )  i s  i n v a r i a n t  under t ransformat ion  ( 2 . 5 : l )  

Rotat ion tensor  23: From equat ion  ( 2 . 1 : 5 ) ,  w e  have 
T 

N V ( t )  = l ? ( t ) R ( t )  N 

Hence, f r o m  equation ( 2 . 5 : 5 ) ,  w e  can w r i t e  

(2 .5:3)  

(2 .5 :4)  

( 2 . 5 : s )  

(2 .5 :5 )  

(2 .5 :6 )  

** T ** 
N F ( t ) E ( t l T  = N F ( t ) E  (t) 

= N F (t) N P (t) N R ** [t) 
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or 
L 

Taking the transpose of both sides 

(2.5:7) 

(2.5:8) 

3. CONSTITUTIVE EQUATIONS OF A SIMPLE MATERIAL 

3.1 GENERAL REMARKS 

In photomechanics we have to consider both mechanical and 

electromagnetic fields at the same time. For such cases, not one 

but a set of constitutive equations relating the various field 

quantities are necessary for an exact theory. One such set of 

very general constitutive equations might be 

t 

(3.1:l) 

(3.1:2) 

(3.1:3) 

(3.1~4) 

We shall confine our attention to ideal dielectrics defined 

by the relations E = 0 ,  if = 0, fz  depends on the present value 

of e and does not depend on 32. Furthermore, we wish to consider 

only problems involving very weak electromagnetic fields (propa- 

gation of light). Therefore, we can neglect the dependence of 

T on e and b in (3.1:1), and take 2 as linearly dependent on e,: 

N 

N N N 
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( 3 . 1 : 5 )  

( 3 . 1 ~ 6 )  

The c o n s t i t u t i v e  r e l a t i o n  ( 3 . 1 : s )  w i l l  be considered i n  

Sec t ion  3 . 2  and t h e  r e l a t i o n  ( 3 . 1 : 6 )  i n  Sec t ion  3 . 3 .  

3 . 2  MECHANICAL CONSTITUTIVE EQUATION OF A SIM,PLE MATERIAL 

I n  t h i s  s e c t i o n  w e  w i l l  d i s c u s s  mechanical c o n s t i t u t i v e  equa- 

t i o n s  under the following t w o  requirements:  

1. The p r i n c i p l e  of material i n d i f f e r e n c e  must be 

s a t i s f i e d ,  and 

2 .  The material i s  mechanically i s o t r o p i c .  

W e  w i l l  r es t r ic t  ou r se lves  t o  the pu re ly  mechanical case and ne- 

g l e c t  the  inf luence  of any other  f i e l d s  such as e lec t romagnet ic  

f i e l d s .  

A simple mater ia l  i s  def ined  as one, i n  which the  stress a t  

any p o i n t  5 a t  t h e  p r e s e n t  t i m e  t depends only  on the  h i s t o r y  of 

the deformation g rad ien t  N F ( T )  i n  t h e  neighborhood of the p o i n t  5 
under cons idera t ion :  

, 

t g5,t) = 2 C p ) I  -m ( 3 . 2 : l )  

The func t iona l  i n  equat ion  ( 3 . 2 : l )  cannot  be a r b i t r a r y .  It 

i s  res t r ic ted  t o  the c lass  of f u n c t i o n a l s  t h a t  s a t i s f y  the  p r in -  

c i p l e  of ma te r i a l  i nd i f f e rence .  According t o  t h i s  p r i n c i p l e ,  the  

c o n s t i t u t i v e  equat ion ( 3 . 1 : l )  should have the s a m e  f o r m  i n  the  new 

frame of coordinates:  
* 

L 

( 3 . 2 ~ 2 )  
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. Making use of equat ions (2.4:4), (2.4:8), and (3.2:l) l eads  t o  

t h e  r e l a t i o n  

N Q(t)%Cg(T) 3QTW = aCQ(T)g(O? (3.2:3) 

which must be i d e n t i c a l l y  s a t i s f i e d  f o r  every orthogonal tensor  

Q(t) and every i n v e r t i b l e  tensor  E ( t ) .  
I f  t h e  material is  mechanically i s o t r o p i c ,  t h i s  p u t s  f u r t h e r  

r e s t r i c t i o n s  on t h e  c o n s t i t u t i v e  r e l a t i o n  (3.2:l) .  The mechanical 

c o n s t i t u t i v e  equat ion (3.2:l) must then  remain i n v a r i a n t  under t h e  

t ransformation (2.5:l) : 

(3.2:4) 

where t h e  double star ind ica t e s  q u a n t i t i e s  under t ransformation 

(2.5:l) .  Using equat ions (2.5:2) and (2.5:3), we  o b t a i n  t h e  re- 

l a t i o n  

% c g z , T )  3 = aCE&T)g(T) 3 (3.2:s) 

which must be s a t i s f i e d  i d e n t i c a l l y  f o r  every proper orthogonal 

t enso r  P and every i n v e r t i b l e  t enso r  E. - 
Equations (3.2:3) and (3.2:5) express  t h e  r e s t r i c t i o n s  im- 

posed on t h e  mechanical c o n s t i t u t i v e  equat ion by t h e  p r i n c i p l e  of  

material ind i f f e rence  and material i so t ropy  r e spec t ive ly .  

r e p r e s e n t a t i o n  for t h e  c o n s t i t u t i v e  func t iona l s  s u b j e c t  t o  e i t h e r  

of t h e s e  r e s t r i c t i o n s  can be obtained by making use of t h e  r i g h t  

and l e f t  deformation tensors .  We w i l l  consider  t h e  use of  t h e s e  

tensors sepa ra t e ly .  For t h e  sake of  s i m p l i c i t y  i n  wr i t i ng ,  we 

o m i t  i n d i c a t i o n  of t h e  dependence o f - v a r i o u s  q u a n t i t i e s  on t i m e .  

Explicit 
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a. Use of Right Deformation Tensor 

The mechanical constitutive equation satisfying the restric- 

tion (3.2:3) imposed by the principle of material indifference can 

be obtained by using the right deformation tensor. 

equation (2.1:4), equation (3.2:3) can be written as follows: 

Making use of 

I -78- 

(3.2:7) 

for every orthogonal transformation g. 
to ET. 

Let us take 9 to be equal 
With this choice of 2, equation (3.2:7) takes the form 

(3.2:8) 

It can be seen by direct substitution that this restriction on 

N 3 is also sufficient. Equation (3.2:8) represents the general 

form of the mechanical constitutive equation of a simple material 

satisfying the principle of material indifference. It is equally 

valid for both isotropic and anisotropic materials. 

ial is also isotropic, then equation (3.2:8) must be invariant 

If the mater- 

' under the transformation (2.5:l) : 

(3.2:9) 

Making use of the equations (2.5:2), (2.5:3) and (2.5:4), this 

equation can be reduced to 
pT$g3p = T E l  
N 

(3.2:lO) 

Functionals satisfying this type of relation are called isotropic 

functionals.' 

functional 3 must be an isotropic functional. 
'For an exact definition of isotropic function see Truesdell and 

Thus, if the material is isotropic, the constitutive 

NO11 [15], pp 22-23. 



b. Use of Left Deformation Tensor 

The general mechanical constitutive equation satisfying the 

restriction (3.2:3) imposed by the mechanical isotropy of the 

material can be obtained in a simple form by using the left defor- 

mation tensor. Use of equation (2.1:5) in equation (3.2:5) leads 

to 

(3.2:11) 

for every proper orthogonal transformation ,P. 

equal to R . With this choice, equation (3.2:11) leads to 

Let us choose P 
N 

T 
N 

(3.2:12) 

This equation, in order to represent a valid constitutive equation, 

must satisfy the principle of material indifference. It must be 

invariant under transformation (2.4:3) - (2.4:5) : 
N 

From equations (2.4:4) and (2.4:10), we get 

(3.2:13) 

(3.2:14) 

N 

That is, 3 must be an isotropic functional. 

Summarizing the results of this Section, we have the follow- 

ing statement: 

The mechanical constitutive equation of an isotropic simple 

material has one of the forms of equations (3.2:8) or (3.2:12) 

where the functionals 3 and 3 are isotropic functionals. 
N 

I 
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3 . 3  PHOTOMEHANICAL CONSTITUTIVE EQUATIONS 

. ' I  

* I  

W e  consider an  i d e a l  d ie lectr ic  def ined  by the  re la t ion 

( 3 . 1 : 6 )  

From ( 2 . 3 : 1 9 ) ,  we can de f ine  a new t enso r  E such t h a t  

( 3 . 3 : l )  

( 3 . 3 : 2 )  

The tensor  15 i s  called t h e  d i e l e c t r i c  tensor .  

W e  consider only the  c l a s s  of m a t e r i a l s  f o r  w h i c h  the dielec- 

t r i c  t enso r  a t  any p a r t i c l e  X and t i m e  t is completely determined 

by t h e  h i s t o r y  of t h e  deformation g rad ien t :  
t E(58 t )  = : { E ( ' ) ]  ( 3 . 3 : 3 )  
- W  

One might a l s o  consider  the following poss ib l e  c o n s t i t u t i v e  equa- 

t i o n s  : 

or 

t 
( 3 . 3 : 4 )  

t t 
( 3 . 3 : 5 )  

Since  w e  assume t h a t  a l l  t h e  m a t e r i a l s  under cons idera t ion  a r e  

mechanically simple,  use of t h e  mechanical c o n s t i t u t i v e  equat ion 

( 3 . 2 : l )  reduces equat ions ( 3 . 3 : 4 )  and ( 3 . 3 : 5 )  t o  the  form of equa- 

t i o n  ( 3 . 3 : 3 ) .  Hence, i n  t h i s  s e c t i o n  w e  consider  only equat ion 

( 3 . 3 : 3 ) .  

W e  make the  following assumptions: 

1. The electromagnetic q u a n t i t i e s  cy d and E t ransform l i k e  

vec to r s  f r o m  one frame of  s p a c i a l  coord ina te s  t o  another .  

2 .  The p r i n c i p l e  of material i n d i f f e r e n c e  may be extended t o  

-80- 
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. 
' .  

assert t h a t  t h e  c o n s t i t u t i v e  equation ( 3 . 3 : 3 )  must be i n v a r i a n t  

under t h e  t ransformation ( 2 . 4 : 3 ) ,  and 

3.  The material is  photomechanically i s o t r o p i c  so t h a t  t h e  

c o n s t i t u t i v e  r e l a t i o n  ( 3 . 3 : 3 )  is  i n v a r i a n t  under t h e  transforma- 

t i o n  ( 2 . 5 : l ) .  

I n  order  t o  determine t ransformation of K under ( 2 . 4 : 3 ) ,  l e t  
ry 

us  see how t h e  equat ion ( 3 . 3 : 2 )  t r ans fo rms  under t h e  change of 

s p a c i a l  frame given by equation ( 2 . 4 : 3 )  

But f r o m  t h e  first assumption, 

N d* = 

and 
* 

cy e = e .  
Hence 

( 3 . 3 : 6 )  

( 3 . 3 : 7 )  

( 3 . 3 : 8 )  

Qg = Q C O E  

* 
= €05 $& ( 3 . 3 : 9 )  

or * (E - 5 Q)z = 0 ' ( 3 . 3 : l O )  

Equation ( 3 . 3 : 9 )  must be sa t i s f ied  f o r  a l l  E. Thus, 
* 

N K =mT- ( 3 . 3 : l l )  

The d i e l e c t r i c  t enso r  K, analogous t o  T, transforms l i k e  a second 

o r d e r  t enso r  under ( 2 . 4 : 3 ) .  Hence, w e  can use exac t ly  t h e  same 

reasoning as w a s  used i n  Section 3 . 2  t o  show t h a t  t h e  requirement 

o f  mater ia l  i nd i f f e rence  and i so t ropy  reduces equat ion ( 3 . 3  : 3 )  t o  

e i t h e r  one of t h e  forms. 

cy N 
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E = r W H N  R R I C I R ~  

or 

Where t h e  func t iona l  must be i s o t r o p i c :  

(3.3:12) 

(3.3:13) 

(3.3:14) 

4. APPROXIMATE MECHANICAL CONSTITUTIVE EQUATIONS 

4 . 1  FADING MEMORY 

So f a r  w e  have dea l t  only wi th  t h e  g e n e r a l  mechanical c o n s t i -  

t u t i v e  r e l a t i o n .  

mations of  p r a c t i c a l  value.  

s u b j e c t  mat ter  of t h i s  chap te r ,  t h e  reader  is  r e f e r r e d  t o  Refer- 

ences (14) and (15) .  W e  w i l l  g ive  only  t h e  e s s e n t i a l s ,  fol lowing 

t h e  above references. 

I n  t h i s  chapter  w e  w i l l  i n v e s t i g a t e  s o m e  approxi- 

For a more thorough t r ea tmen t  of t h e  

I n  Sect ion 3 . 2  w e  have def ined  a s imple mater ia l  as one i n  

which t h e  s t r e s s  a t  t h e  p r e s e n t  t i m e  i s  determined by t h e  e n t i r e  

h i s t o r y  of t h e  deformation g rad ien t .  W e  now cons ider  materials, 

known as m a t e r i a l s  w i t h  fad ing  memory, f o r  which deformations t h a t  

occurred i n  the  d i s t a n t  p a s t  have less in f luence  i n  determining 

t h e  p r e s e n t  stress than those  t h a t  occur red  i n  t h e  r e c e n t  p a s t .  

I n  order  t o  g ive  a p r e c i s e  mathematical formulat ion t o  t h e  

concept of fading memory, l e t  us  in t roduce  t h e  in f luence  func t ion  

(Coleman and N o l l )  or  o b l i v i a t o r  (T ruesde l l  and N o l l ) .  

A funct ion h i s  c a l l e d  an obl iv ia tor  of order n>O i f  it 

s a t i s f i e s  t h e  following cond i t ions .  - 
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? 

a )  h ( s )  is def ined f o r  O<s<m and has p o s i t i v e  real  

va lues  : h ( s )  >O 

b) h ( s )  is  normalized by the  condi t ion  

h (0 )  = 1 

c) h ( s )  decays t o  zero i n  such a way t h a t  

l i m  s % ( s )  = o 
monotonically for l a r g e  s. 

S-m 

For example, 

h ( s )  = (s+l) I P  

is  an o b l i v i a t o r  of order  n<p. An exponent ia l  i s  an 

(4.1:l) 

(4.1: 2) 

(4.1:3) 

(4.1:4) -BS h ( s )  = e e B>O e 

o b l i v i a t o r  of a r b i t r a r y  order .  

Consider the  l i n e a r  funct ion space of the h i s t o r i e s  of sym- 

m e t r i c  t enso r s  g ( s ) .  

measured backward f r o m  t h e  present .  W e  de f ine  the  r e c o l l e c t i o n  of 

The parameter s is t o  be regarded as t i m e  

a h i s t o r y  ~ ( s )  as the  norm of h i s t o r y  g ( s )  defined by - 
where 

(4.1:s) 

(4.1:6) 

is  t h e  magnitude of t h e  tensor  g ( s ) .  

tories wi th  f i n i t e  r e c o l l e c t i o n  forms a H i l b e r t  Space H. The 

i n n e r  product of t w o  h i s t o r i e s  g ( s )  and E ( s )  i n  H is given by 

The c o l l e c t i o n  of a l l  h i s -  

W 

< g ( s )  , E ( s ) ) ~  = foTrLg(s) * I 3 ( s )  h ( s )  2ds . (4.1:7) 

Now the p r i n c i p l e  of fading memory can be pu t  i n  t h e  following 
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p r e c i s e  mathematical form 10. . a func t iona l  3 is  a fading memory 

func t iona l  if t h e r e  ex i s t s  an  obl iviator  of  o rde r  greater than  

n + 1 / 2  such t h a t  t h e  response func t iona l  3 { G  ( s ) ]  is  def ined  and 

n t i m e s  F reche t -d i f f e ren t i ab le  i n  a neighborhood of  t h e  zero  h i s -  

t o r y  of t h e  funct ion space H. 

0 

0 N 

I t  i s  important t o  note  h e r e  t h a t  t h e  above p r i n c i p l e  does 

n o t  r e q u i r e  any admissible  h i s t o r y  g ( s )  t o  be continuous.  Hence 

t h i s  p r i n c i p l e  can be app l i ed  t o  h i s t o r i e s  of  t h e  type t h a t  occur 

i n  s t r e s s - r e l a x a t i o n  experiments. 

W e  can see t h e  imp l i ca t ions  of t h e  p r i n c i p l e  of  t h e  fading 

memory, f r o m  t h e  way w e  def ined  t h e  norm i n  t h e  space of h i s t o r i e s .  

AS t h e  i n t e g r a l  de f in ing  t h e  norm i s  weighted wi th  a decaying func- 

t i o n ,  t w o  h i s t o r i e s  can be close t o  one another  i f  t h e  va lues  of 

N G ( s )  are close enough i n  r e c e n t  p a s t  ( s m a l l  va lues  of  s )  even i f  

they are far  a p a r t  i n  d i s t a n t  p a s t  ( l a r g e  va lues  of  s ) .  

4 . 2  FINITE LINEAR VISCOELASTICITY 

I n  t h i s  s e c t i o n  w e  w i l l  d e r i v e  t h e  c o n s t i t u t i v e  r e l a t i o n  de- 

f i n i n g  f i n i t e  l i n e a r  v i s c o e l a s t i c i t y .  This  theory  i s  due t o  

Coleman and No11 ( 1 3 ) .  This  s e c t i o n  fo l lows  t h e i r  p re sen ta t ion .  

W e  have shown i n  Sec t ion  3 . 2  t h a t  t h e  g e n e r a l  c o n s t i t u t i v e  

r e l a t i o n  of a simple material ( r e s t r i c t e d  by the p r i n c i p l e  Of 

material  i nd i f f e rence )  has  t h e  form (3.2:8): 

"Truesdell and N o 1 1  (15), c a l l  t h i s  the s t r o n g e r  p r i n c i p l e  of 

fading memory. 
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(4.2:l) T R ( t )  z(t)E(t) = z{E( t -E) j  
0 N 

The s t r e t c h  tensor ? ( T )  i s  computed wi th  t h e  i n i t i a l  s ta te  

as t h e  re ference  state. However, f o r  t h e  puspose of t h e  p re sen t  

chapter ,  we  would l i k e  t h e  arguments o f  t h e  response func t iona l  

N 3 t o  be q u a n t i t i e s  computed wi th  the p resen t  s ta te  as re ference  

conf igura t ion .  

From (2.1:6) # we see t h a t  N U ( 7 )  is  determined 

(2.1:4) and (2.1:28) ,  we  f i n d  

where 

Therefore,  N C ( 7 )  is determined by $(T )  and N C (t). 

t o  d e r i v e  a new func t iona l  2 such t h a t  

where 

by C.(T). From 

(4.2: 2 )  

(4.2:3) 

T h i s  enables  us  

(4.2:4) 

(4.2:5) 

(4.2:6) 

and 2 depends on t h e  h i s t o r y  & ( T )  b u t  only on t h e  p r e s e n t  va lue  

of c. 
I f  the material has always been a t  rest 

A c (t-s) = N I -t 

and hence t h e  r i g h t  s i d e  becomes a funct ion of  CJt) only.  This 

f u n c t i o n  ; (C( t ) )  i s  c a l l e d  t h e  "equi l ibr ium t e r m .  'I Thus. equa- 

t i o n  (4.2:4) may be w r i t t e n  i n  t h e  a l t e r n a t e  form 
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where the new functional 5 , denoted by the same symbol, is such 
that 

N aCo;c(t)] N = 0 . (4.2:8) 

The functional 5 can be approximated by a bounded, homogene- 
ous, polynomial functional of gt(t-s) under suitable conditions. 

In order to achieve this, Coleman and No11 (13) assumed the fol- 

lowing additional smoothness requirements: 

a) The Frechet differentiability of the response functional 

postulated in the principle of fading memory is uniform in the 

tensor parameter s(t), and 

b) The tensor function N f(c) of equation (4.2:7) is n times 

continuously differentiable . 
These two assumptions together with the principle of fading 

11 memory are sufficient to justify the approximation 

k=l 

where the order symbol "0" is used in the sense 

lim o ( c )  = 0 
E - 0  € 

(4.2:lO) 

For convenience in writing the explicit dependence of all the 11 

quantities on the present time t is suppressed in most of the 

equations hereafter: i.e., x m  x(t), etc. 

-86- 



. and ak!R{ N ] is t h e  kth v a r i a t i o n  of  t h e  func t iona l  E{ ] . 
I f  w e  consider  t h e  p a r t i c u l a r  case of n = 1, w e  ob ta in  

Consider deformation h i s t o r i e s  gt ( s )  which are s m a l l  i n  t h e  recent 

pas t .  Because t h e  i n t e g r a l  de f in ing  the norm is  weighted wi th  an 

o b l i v i a t o r ,  t h e  norm of &(s)  can be considered s m a l l  even i f  t h e  

deformations are l a r g e  i n  d i s t a n t  pas t .  For such deformations t h e  

l a s t  term i n  equat ion ( 4 . 2 : l l )  can be neglected compared t o  t h e  

o the r  t e r m s  and w e  have t h e  approximation 

T = g g  + Q E ~ ( s ) ; C I  N . (4.2:12) 

Now, l e t  us make 

(genera l ly  known 

use of  a theorem i n  t h e  theory of H i l b e r t  spaces 

as Riesz-Frechet  Theorem) which states t h a t  

where N r ( S ; g ,  f o r  each s and each s p  is a l i n e a r  t ransformation of 

space of symmetric t enso r s  i n t o  i t s e l f  (i.e.8 a four th  order  ten- 

sor).  The c o n s t i t u t i v e  r e l a t i o n  de f in ing  f i n i t e  l i n e a r  visco- 

e l a s t i c i t y  (4.2:12) then assumes t h e  form 

!? = f (C)  + JOD IJs;c)&(s)ds . (4.2:14) 
0 N " 

In  the case of i s o t r o p i c  mater ia l s ,  it can be shown (see Sec t ion  

3.1) t h a t  t h e  t enso r  valued funct ion J ( C )  and t h e  l i n e a r  func t iona l  

given by t h e  i n t e g r a l  a r e  i s o t r o p i c  i n  t h e  sense  

(4.2:15) 
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f o r  a l l  orthogonal t enso r s  N Q(t) .  

and No11 (15), a r t i c l e  37)  t h a t  

I t  has  been shown (see Truesde l l  

2 
N f(g) = h O- I + h12 + h 2 c  (4.2:17) 

(4.2:18) 

where f o r  each s t h e  tensor  func t ions  L(s;c) a r e  i s o t r o p i c  and 

hence have representa t ions  of t h e  form (4.2:17).  

4.3 SMALL DEFORMATIONS - LINEAR VISCOELASTICITY 

The theory of f i n i t e  l i n e a r  v i s c o e l a s t i c i t y  i s  based on t h e  

assumption t h a t  t h e  deformations are small  i n  t h e  r e c e n t  p a s t .  

However, no r e s t r i c t i o n s  whatsoever, w e r e  p u t  on deformations i n  

remote p a s t .  I n  t h i s  chapter  l e t  us i n v e s t i g a t e  t h e  behavior of a 

simple ma te r i a l  with fading memory f o r  s m a l l  deformations.  W e  use 

t h e  t e r m  "small  deformation" i n  t h e  sense  as def ined  i n  Sec t ion  2 .1 .  

L e t  u s  first consider ,  how t h e  va r ious  q u a n t i t i e s  def ined  i n  

t e r m s  of deformation g r a d i e n t s  F ( t ) ,  t h a t  occur i n  t h e  c o n s t i t u -  
N 

t i v e  equat ion (4.2:14) of f i n i t e  l i n e a r  v i s c o e l a s t i c i t y ,  may be 

approximated i n  the  case  o f  s m a l l  deformations.  
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. From equation (2.1:22) , 

(4.3:l) 2 
N R T ( t )  = E( t ) - - l  = N I - E(t)  + O(S ) . 

Using equat ions (2.1:16) and (2.1:17) i n  equat ion (2.1:25), 

(4.3:2) - 2 - + g(7) - N H ( t )  + O(€ ) .  

Hence st(T) can be w r i t t e n  as 

c 

= N I + O ( S 2 ) .  

. From t h e  d e f i n i t i o n  of s ( s )  , 

= N I + 2[E(t-s)  N - N E ( t ) ]  + O ( c 2 )  . 
Using equat ion (2.1:20) , 

(4.3:3) 

(4.3:4) 

(4.3:5) 

I f  t h e  material has  always been  he ld  i n  t h e  r e fe rence  configura- 

t i o n ,  w e  have CJt) = A and t h e  corresponding stress &, c a l l e d  

t h e  " r e s i d u a l  stress", i s  given by 

(4.3:6) 
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By using t h e  assumption t h a t  g(C(t))  i s  continuously d i f f e r e n t i a b l e ,  

we  can expand z(C(t)) i n  a power series about ,& and w r i t e  

(4.3:7) 2 
N f (g t ) )  = % + &(g( t ) )  + o(e 1 

where ,& is a t enso r  valued l inear  func t ion  of g .  
Making use of equat ions ( 2 . 1 : 2 2 ) ,  (4.3:4) and (4.3:7) i n  

equation (4.2:14) and neglec t ing  t e r m s  of 0 ( e n )  f o r  n > 1, w e  g e t  

L e t  u s  def ine a new fou r th  order  t enso r  N J(s )  c a l l e d  stress relaxa-  

t i o n  funct ion by 

N J ( S ) P  - 2 J m ~ ( 5 : 9 d ~  . 
S 

Then 

(4.3:9) 

(4.3: 10)  

and hence we  may w r i t e  equat ion (4.3:8) i n  t h e  form 

- 
N T ( t )  - % - E(t)G - xOE(t )  

+ [,& + J ( O ) ] E ( t )  cy + s” 0 ~ ( s ) [ E ( t - s ) ] d s b ( 4 . 3 : l l )  

When t h e  r e s idua l  stress T+ i s  zero,  t h e  r e fe rence  conf igu ra t ion  

i s  c a l l e d  the  “ n a t u r a l  s ta te .”  I n  t h i s  s ta te ,  t h e  above c o n s t i t u -  

t i v e  equation reduces t o  

. L  

L 

. 

N T ( t )  = [,& + J(O)]E(t)  + s” 0 i ( s ) [ g ( t - s ) ] d s  . (4.3:12) 

-90- 



. This i s  t h e  c o n s t i t u t i v e  equation of  t h e  classical  theory of l i n -  

ear v i s c o e l a s t i c i t y .  N o t i c e  t h a t  t h i s  equat ion i s  v a l i d  f o r  

materials without  any symmetry a t  a l l .  I f  t h e  material i s  iso- 

t r o p i c  then we can show t h a t &  and J ( s )  should be i s o t r o p i c  func- 

t i o n s  of N E ( t )  . 
m a l  v i s c o e l a s t i c i t y  may be w r i t t e n  i n  t h e  form 

N 

The c o n s t i t u t i v e  equat ion of  i s o t r o p i c  i n f i n i t e s i -  

+ x ( O ) ) t r E ( t )  + Jm X(s) t rg( t - s )ds]A 
0 N 

(4.3:13) 

w h e r e  X and p a r e  m a t e r i a l  cons tan ts  and x(s) and F ( s )  are m a t e r i a l  

func t ions  of t i m e .  The cons tan ts  and p coinc ide  w i t h  the  Lame‘ 

cons tan t s  of the  m a t e r i a l  i n  equilibrium. 

and I-I + F(t)  may be regarded a s  t i m e  dependent Lame‘ c o e f f i c i e n t s  

for t h e  stress r e l a x a t i o n  response t o  a sudden deformation a t  

time t = 0. 

T h e  func t ions  A + X ( t )  

4.4 ELASTICITY 

The c o n s t i t u t i v e  equations of t h e  t h e o r i e s  of nonl inear  and 

c lass ical  l i n e a r  e las t ic i t ies  can be deducted from the  previous 

theory.  An elastic m a t e r i a l  is def ined  as a simple m a t e r i a l  f o r  

which the stress a t  t i m e  t depends only on t h e  l o c a l  conf igura t ion  

a t  t i m e  t. Hence the  c o n s t i t u t i v e  equat ion de f in ing  as e l a s t i c  

material takes t h e  form: 

(4.4: l )  
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This can be e a s i l y  seen  t o  be t h e  case corresponding t o ;  = 0 

f o r  f i n i t e  deformations and J- = 0 f o r  i n f i n i t e s i m a l  deformations.  

I n  t h i s  case t h e  c o n s t i t u t i v e  equat ions (4.2:14) and (4.3:13) 

reduce t o  

(4.4:2) 2 
N T ( t )  = ho& + h lE( t )  + h 2 g ( t )  

and 

T ( t )  = xI-trg(t) + 2 p E ( t ) .  N (4.4 :3) 

Equations (4.4:2) and (4.4:3) are t h e  c o n s t i t u t i v e  equat ions of 

i s o t r o p i c  nonlinear e l a s t i c i t y  and i s o t r o p i c  l i n e a r  ( i n f i n i t e s i m a l )  

e l a s t i c i t y  respec t ive ly .  

5. APPROXIMATE PHOTOMECHANICAL CONSTITUTIVE EQUATIONS 

I n  Sect ions 3.2 and 3.3 w e  have shown t h a t  t h e  genera l  mech- 

a n i c a l  and photomechanical c o n s t i t u t i v e  equat ions of an i s o t r o p i c  

simple ma te r i a l  has t h e  form of equat ions (3 .2 :12 )  and (3.3:13).  

For f u r t h e r  discussion of photomechanics, it i s  necessary t o  assume 

t h a t  t h e  electromechanical c o n s t i t u t i v e  equat ion (3.3:13) i s  in- 

v e r t i b l e  where t h e  func t iona l s  are i s o t r o p i c .  

W e  w i l l  show i n  Chapter 6 t h a t  photo methods can be e f f e c t i v e -  

l y  used t o  "solve" t w o  dimensional problems of c lass ical  l i n e a r  

e l a s t i c i t y  and v i s c o e l a s t i c i t y :  Methods are a v a i l a b l e  t o  measure 

t h e  f r i n g e  order n ( t )  which is  p ropor t iona l  t o  t h e  d i f f e r e n c e  i n  

t h e  p r i n c i p l e  values  of t h e  r e f r a c t i o n  t e n s o r  
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For t h e  d iscuss ion  of  nonl inear  problems i n  genera l ,  however, w e  

assume t h a t  we can experimentally determine t h e  r e f r a c t i o n  tensor  

N ( t )  i t s e l f .  Therefore,  we  introduce a new func t iona l  such t h a t  
N 

t 
(5.1:2) 

where Q is  an i s o t r o p i c  funct ional .  Using t h i s  equat ion and equa- 
N 

t i o n  (3.2:12), w e  g e t  t h e  m o r e  convenient form of the  electro- 

mechanical c o n s t i t u t i v e  equation 

T h i s  equat ion can be v a l i d  only for i s o t r o p i c  materials (both 

mechanically and electromechanical ly)  . 
Define a new tensor  by 

-t N (t-s) = E(t -s )g( t ) - l  . (5.1:4) 

W e  can then w r i t e  equat ion (5.1:3) i n  the f o r m  

t h a t  i s  t h e  stress is  a func t iona l  of the  h i s t o r y  l??(~) and a 

func t ion  of t h e  p re sen t  va lue  z ( t ) .  From t h e  d e f i n i t i o n  ( 5 . M )  # 

N (t) = : (5.1:6) -t 

t h e r e f o r e ,  equat ion (5.1:5) can be w r i t t e n  i n  the form analogous 

t o  equat ion  (4.2:7) : 
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. I  

(5.1:7) 

where 

(5.1:7a) 

and t h e  func t iona l  2 i s  such t h a t  

g{O;N(t)]  = 0. (5.1:8) 
N N  

The func t ion  and t h e  f u n c t i o n a l  2 must be i s o t r o p i c  i n  t h e i r  

arguments. 

W e  m a k e  t h e  fol lowing assumptions s i m i l a r  t o  those  t h a t  w e r e  

made i n  Chapter 4: 

1. P r i n c i p l e  of fad ing  memory for  e lectromechanical  case: 

There e x i s t s  an o b l i v i a t o r  of o rde r  g r e a t e r  than  n + 4 such t h a t  

the  response func t iona l  zEzt (t-s) ; N ( t )  N ] i s  def ined  and n t i m e s  

Frechet  d i f f e r e n t i a b l e  i n  a neighborhood of  t h e  zero  h i s t o r y  of 

t h e  func t ion  space H1 of  symmetric t e n s o r s  i t ( t - s ) .  

2. The Frechet  d i f f e r e n t i a b i l i t y  of t h e  response f u n c t i o n a l  

N 3 pos tu l a t ed  i n  t h e  above p r i n c i p l e  of fad ing  memory i s  uniform 

i n  the  t enso r  parameter N N ( t )  . 
3 .  The tensor  func t ion  X ( N ( t ) )  of equat ion  (5.1:7) is n t i m e s  

cont inuously d i f f e r e n t i a b l e .  

These assumptions are s u f f i c i e n t  t o  j u s t i f y  t h e  approximation 

n 

N T ( t )  = X ( W ) )  + 16, a k g s ( t - s )  ,S(t) 3 
k = l  

(5.1:9) 
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where t h e  norm of N i s  def ined similar t o  t h a t  of (see equat ion 

4.1:5) and t h e  order  symbol is  used i n  t h e  sense  of equat ion 

N 

(4.2:lO). I n  p a r t i c u l a r ,  

For deformations such t h a t  t h e  h i s t o r i e s  Et( t -s)  are s m a l l  i n  

recent p a s t ,  we  can neglec t  the  l a s t  t e r m  i n  t h i s  equation: 

(5.1:11) 

By the  Riesz-Frechet theorem, t h e  l i n e a r  tensor  valued func t iona l  

69 can be w r i t t e n  as 
h) 

aD 

6 2  {&(t-s) ;g(t)  ] = s" 'Y(s;g)&(t-s)ds 
s=o 0 

(5.1:12) 

w h e r e  Y(s;u) i s  a fou r th  order tensor .  Thus, we  can w r i t e  equa- 

t i o n  (5 .1 : l l )  i n  t h e  form 

N 

As t h e  func t ions  are i so t rop ic ,  they must s a t i s f y  the  i d e n t i t i e s  

and 

[" Y(s;mT)Q(t-s)N,t(t-s)Q(t-s) T d s  
0 -  

(5.1:15) 
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f o r  a l l  orthogonal t enso r s  2. 
s i m i l a r  t o  equations (4.2:17) and (4.2:18), i . e . ,  

Thus they have r ep resen ta t ions  

(5.1:17) 

where, f o r  each s,  t h e  t enso r s  Z i ( s ; N )  a r e  i s o t r o p i c  and hence 

have representa t ions  of  t h e  form (5.1:16). 

I n  order  t o  f u r t h e r  s impl i fy  equat ion (5.1:13), we consider  

t h e  following approximation. 

l o w s  : 

Define a new tensor  g'(t) a s  f o l -  

N " ( 7 )  = N N-'(O)bT(T) - I- . (5.1:18) 

Then , 

"(0) = 0 . (5.1:19) 

W e  wish t o  consider t h e  case when N '  remains s m a l l .  L e t  

= sup l g ' ( T ) l  0 (5.1:  20) 
7 

where I N '  ( 7 ) l  is given by (4.1:6). 

r e f r a c t i o n  tensor a r e  s m a l l  if 

W e  say t h a t  t h e  changes i n  
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€<<l (5.1: 21)  
a 

and we  consider  deformations such t h a t  t h e  above i n e q u a l i t y  is 

t rue .  

By t h e  t h i r d  assumption made i n  t h e  beginning of  t h i s  chapter ,  

we  can expand 1 i n  a power series of N' (t): 

(5.1:22) 2 
N Y(E( t ) )  = x ( g ( 0 ) )  + Et (t) + O ( S  1 

where L is  a fou r th  order  tensor .  Because of  t h e  assumption t h a t  

t h e  stress is zero i n  t h e  reference state,  

N 

N v(g(0)) = 0 (5.1:23) 

Thus # 

ry v ( g t ) )  = 3' (t) + 0(g2)  (5.1:24) 
L 

Furthermore, we g e t  

N = 1 E' (7) - N' (t) + 0 ( c 2 )  (5.1: 25) -t N N 

Making use of equat ions (5.1:24) and (5.1:25) i n  equat ion (5.1:13) 

and neg lec t ing  a l l  t e r m s  of O ( e n )  f o r  n > 1, we g e t ,  

L e t  u s  d e f i n e  a new funct ion N @ ( s )  c a l l e d  o p t i c a l  relaxation func- 

t i o n  by 

Then 

(5.1:27) 

(5.1: 2 8 )  
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Using equation (5.1:28), we can write equation (5.1:26) in the 

form 

N T(t) = [L N N  + 6(0)]Et (t) + s" 0 -  i ( s ) [ N t  N (t-s)]ds . (5.1:29) 

The functions 2 and 2 must be isotropic functions of N N ( t )  and 

thus can be represented in the form of equation (5.1:16). 

this representation, and simplifying the above isotropic electro- 

mechanical constitutive equation for the case of infinitesimal 

changes in the dielectric tensor, we obtain 

Using 

N T(t) = [(a + r(0))trN' N (t) + N (t-s)ds]L 

where a and B are material constants and a(t) and p(t) are material 

functions which must be evaluated experimentally. 

So far, we have discussed time dependent photomechanical 

equations. But for many materials, such as those used in photo- 

elastic experiments, the stress at any time t can be determined 

by the value of E ( 7 )  at time t. This corresponds to the case 

where = 0 .  In such cases, the t h e  dependent material functions 

vanish in the photomechanical constitutive equations and equations 

(5.1:13) and (5.1:30) simplify to 

2 (5.1:31) 
A A 

N T(t) = hI N + C l ~ '  (t) + h2E' (t) 

for the finite linear case, and 
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* -  

L 

t 

f o r  the case of i n f i n i t e s i m a l  changes i n  the d i e l e c t r i c  tensor .  

6. LINEAR PHOTOMECHANICS 

6 .1  LINEAR PHOTOVISCOELASTICITY 

By l i n e a r  pho tov i scoe la s t c i ty  we  mean t h e  experimental  de- 

te rmina t ion  o f  stresses by photo methods i n  bodies governed by the  

c o n s t i t u t i v e  equat ion of  i s o t r o p i c  i n f i n i t e s i m a l  v i s c o e l a s t c i t y .  

T h i s  theory w a s  explained by D i l l  i n  a series of ar t ic les  ( R e f e r -  

ences [41, 153, and [SI). It is an important s p e c i a l  case of t h e  

gene ra l  theory as given i n  t h i s  art icle.  The p resen ta t ion  of t h i s  

s e c t i o n  f o l l o w s  those art icles c lose ly .  

The c o n s t i t u t i v e  re la t ion  of  i s o t r o p i c ,  i n f i n i t e s i m a l  v i s -  

c o e l a s t i c i t y  i s  given by equation (4.3:13). Changing t h e  v a r i a b l e  

f r o m  s t o  T = t-s, equation (4.3:13) becomes 

N T ( t )  = { ( x + X ( O ) ) t r E ( t )  N + s" t ( t - T ) t r E ( T ) d T } I  N cv 

-OD 

It  i s  assumed t h a t  t h e  ma te r i a l  i s  i n  i t s  n a t u r a l  conf igura t ion  

up t o  t i m e  T = 0. I n  such a case,  t h e  l o w e r  l i m i t s  i n  the i n t e -  

grals of equat ion (6.1:l)  can be replaced by zeros.  Furthermore, 

in t roducing  new material funct ions def ined  by 

X , ( t )  = x+T(t)  (6.1:2) 
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equation (6.1:l)  may be written as 

(6 .1 :3 )  

N T(t) = [A,(t)trg(t) + 1,' il(t-T)trE(~)dT]I N N 

+ pl(t)E(t) hl + st 0 bl(t-T)g('r)dT . 

Integration by parts reduces this equation to 

N T(t) = [:[zAl(t-T)tr&(T) + pl(t-~)h(7)]d7 N . (6.1:5) 

Taking the trace of both sides yields 

trT(t) = r[3Al(t-7) + ~~(t-~)]trk(~)d~ N . (6.1:6) 
0 N 

It is usual to write this in the form 

-hrX(t) 3 = StK(t-T)trE(T)dT 0 N , 

where 

is called the bulk relaxation modulus. 

From equations (6.1:5) and (6.1:6), 

S(t) = t Pl(t-7)&(T)d7 : 
0 N 

(6.1:4) 

(6.1:7) 

(6.1:8) 

(6.1:9) 

( 6 . 1 : l O )  

(6.1:11) 



are called stress deviator and strain deviator respectively. The 

material function p1 is generally called shear relaxation modulus. 

SO far, we have discussed only the mechanical constitutive 

equation; now we consider the photomechanical constitutive equa- 

tion. We call a material linear photoviscoelastic if its mechan- 

ical constitutive equation is of the form (6 .1 : l )  and its electro- 

mechanical constitutive equation is of the form of equation 

(5.1:30). With the change of variable T = t-s, equation (5.1:30) 

takes the form 

N T(t) = [ (a+a(O))trN'(t)+ N I" d(t-T)trN' N ( T ) ~ T ] ;  
-m 

(6.1:12) 

If we assume that the body is in its natural configuration for 

all times T < 0, we can replace the lower limits of the integrals 

in the above equation by zeros: 

N T(t) = {(a+a(O))trN'(t) N + s,' d(t--'T)trN' N (7)dT)I N 

+ 2(8+8(0))N' (t) + $(t--7)N1 (-'T)dT . (6.1:13) 
0 

Let us define new material functions U,(t) and Bl(t) as follows: 

and 
Bl(t) = B+T(t) . (6.1:15) 

Introducing these new material functions in equation (6.1:13) 

-101- 



and using i n t e g r a t i o n  by p a r t s ,  we ob ta in  

Taking the  t r a c e  of t h e  above equat ion,  we  g e t  

t r T ( t )  - = J,'[3ul(t-r) + B l ( t - T ) ] t r h '  N (7)dT . 
f o r  an i s o t r o p i c  material g(0)  = NO&. Then 

The equat ion can be w r i t t e n  i n  t h e  form 

t r T ( t )  = Jt cp(t-T)tri(T)dT 8 
0 N 

w h e r e  

i s  called t h e  o p t i c a l  bulk r e l a x a t i o n  funct ion.  

From equations (6.1:16) and (6.1:17), w e  can w r i t e  

' 1  

I 

(6.1:16) 

(6.1:17) 

(6.1:18) 

(6.1:19) 

S ( t )  = lt $(t-T);(T)dT N : (6.1:20) 
0 N 

where 
N P ( t )  = N N ( t )  - - t r N ( t ) &  3 -  

and 

(6.1:21) 

(6.1:22) 

N P 

t i o n  funct ion 

is dev ia to r  of t h e  r e f r a c t i o n  t enso r  and $ i s  t h e  o p t i c a l  re laxa-  

Equation (6.1:20) can be used t o  c a l c u l a t e  t h e  d i f f e r e n c e  i n  

p r i n c i p a l  s t r e s s e s  f o r  a t w o  dimensional l i n e a r  v i s c o e l a s t i c  
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problem, by using experimentally measured data. The reader is 

referred to the articles by Dill and Fowlkes (References E61 and 

[7]) for a detailed description of the experimental procedure. 

6.2 LINEAR PHOTOELASTICITY 

In Section 4.4 we defined an elastic material as a simple 

material in which the stress at time t depends only on the deforma- 

tion gradient at time t. In the mechanical constitutive equation 

of such a material, all time dependent material functions vanish, 

i.e., h (t) and p(t) are identically zero. This case is represented 

by equation (4.4:3). In terms of deviatoric quantities we can 

write 

and 

s = 2p5 
N 

(6.2:l) 

(6.2: 2) 

A material for which the stress tensor at any time t depends 

only on the refraction tensor at that time will be called "photo- 

elastic". 

written as 

Their photomechanical constitutive equation can be 

" T = IatrFJ' + 26E' . (6.2:3) 

Taking the trace of this equation 

trT = 3atrN' + 26trE' 
N ry 

= (3a + 26)trE' (6.2:4) 

From equation (6.2:3) and (6.2:4) 8 we obtain 
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and 
- 1 trx = - (a  + 7 2 e)trs . 
3 NO 

(6.2:5) 

(6.2:6) 

These two equations are the basic equations for the theory of 

classical linear photoelasticity. 

7. NONLINEAR PHOTOMECHANICS 

7.1 NONLINEAR PHOTOVISCOELASTCITY 

We say that a material is a photoviscoelastic material if 

its mechanical constitutive equation is given by equation (3.2:12) 

and if its electromechanical constitutive equation is given by 

equation (3.3:13) and both functionals have fading memory. For 

the discussion of nonlinear photomethods, we will assume that it 

is possible to experimentally determine the tensor E(t). 

we consider g(t) to be a known function of time. 

Thus, 

Suppose we have a problem of stress analysis of a structure 

made of viscoelastic material. The main difficulty in solving 

this problem by photomethods is finding a suitable finite linear 

photoviscoelastic material to serve as model material which is 

transparent and with mechanical properties the same as the proto- 

type. When such a material is found, a scale model of the actual 

structure is made. This model is subjected to loads proportional 

to those that are acting on the actual structure. By means of the 

appropriate optical instrument, the history of the refraction ten- 

sor g(t) as a function to time is measured at the point where the 
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stress tensor  i s  t o  be evaluated. Knowing t h e  h i s t o r y  of N ( t )  and 

o t h e r  material func t ions ,  t h e  Cauchy Stress t enso r  i n  t h e  model 

s t r u c t u r e  can be found from equation (5.1:3) 

N 

t 

0 
N T ( t )  = zcE(T)j . (7 .1 : l )  

The stress i n  t h e  a c t u a l  s t r u c t u r e  i s  then evaluated by multiply- 

ing  t h e  above stress tensor  by t h e  appropr i a t e  scale factor. 

7 . 2  NONLINEAR PHOTOELASTICITY 

I n  t h i s  Sec t ion  w e  consider the theory of nonl inear  photo- 

e l a s t i c i t y  by w h i c h  we mean the  determinat ion of stresses by 

photomethods i n  nonl inear  e l a s t i c  materials. W e  de f ine  a non- 

l i n e a r  p h o t o e l a s t i c  m a t e r i a l  t o  be a t r a n s p a r e n t  d ie lectr ic  w h o s e  

mechanical c o n s t i t u t i v e  equation i s  of t h e  f o r m  of equat ion (4.4:2) 

and whose photomechanical c o n s t i t u t i v e  equat ion i s  of the form of 

equat ion (5,1:31). 

The stress d i s t r i b u t i o n  in  s t r u c t u r e s  m a d e  of nonl inear  

e las t ic  materials can be determined experimental ly  by photomethods 

i f  w e  can f i n d  a s u i t a b l e  nonlinear p h o t o e l a s t i c  model material. 

The requirement i s  t h a t  t h e  mechanical c o n s t i t u t i v e  equat ions of 

the model and a c t u a l  ma te r i a l s  are the same. 

per iments  s i m i l a r  t o  those  explained i n  t h e  previous sec t ion ,  t h e  

stress tensor  i n  t h e  s t r u c t u r e  can be d-etermined. 

By performing ex- 

Since every viscoelastic m a t e r i a l  i s  an elastic material f o r  

s u f f i c i e n t l y  slow loading, the m o d e l  material may be v i s c o e l a s t i c .  

I f ,  f o r  example, t h e  deformations are h e l d  cons t an t  for r ecen t  
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t i m e ,  then,  by equat ion (4.2:9),  w e  have 

4 
cy T = g(C) . ( 7 . 2 : l )  

This  i s  t h e  c o n s t i t u t i v e  r e l a t i o n  of a non l inea r ly  e las t ic  material. 

From equat ion (5.1:9) w e  have, i n  t h i s  case, 

f o r  an i s o t r o p i c  mater ia l .  I n  p a r t i c u l a r ,  t h i s  means t h a t  i f  t h e  

model i s  allowed t o  reach an equ i l ib r ium s t a t e  under cons t an t  load,  

t h e  stress s t a t e  is  t h a t  of  an  e l a s t i c  m a t e r i a l  wi th  c o n s t i t u t i v e  

equat ion ( 7 . 2 : l ) .  

7 . 3  PROPORTIONAL LOADING 

W e  consider a problem f o r  which t h e  stress a t  each p o i n t  ex- 

per ience  a s t e p  change wi th  t i m e ;  t h a t  i s ,  t h e  stress t enso r  i s  

zero  f o r  t < 0. I n  t h i s  case, w e  say  t h a t  t h e  s t r u c t u r e  exper i -  

ences propor t iona l  loading. W e  w i l l  now show t h a t  t h e  Stress s t a t e  

i s  t h e  s o l u t i o n  t o  a family of  nonl inear  e l a s t i c i t y  problems. 

I t  w a s  shown i n  Sec t ion  (3.2)  t h a t  t h e  mechanical c o n s t i t u t i v e  

equat ion of  an i s o t r o p i c  simple material  i s  

W e  w i l l  consider t h e  c l a s s  of problems for which t h i s  c o n s t i t u t i v e  

equat ion  i s  i n v e r t i b l e  and  can be w r i t t e n  i n  t h e  form 
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Consider t h e  process  of creep i n  which t h e  p a r t i c l e  experiences a 

stress h i s t o r y  which i s  zero fo r  T * 0 and cons t an t  for T > 0, 

i .e. ,  

( 7 . 3 1 2 )  = G h ( T )  

where h ( 7 )  is t h e  u n i t  s t e p  funct ion def ined  by 

h ( T )  {O for * O 1 for T > O .  

For such a stress h i s t o r y ,  equation ( 7 . 3 : l )  takes t h e  form 

- 
= B(T , t )  - 4  

( 7 . 3 2 3 )  

( 7 . 3 : 4 )  

For each p a r t i c u l a r  va lue  of t, equat ion ( 7 . 3 : 4 )  is  i d e n t i c a l  t o  

t h e  mechanical c o n s t i t u t i v e  equation of a nonl inear  e las t ic  m a -  

t e r ia l .  Thus, equat ion ( 7 . 3 : 4 )  can be considered a s  a one para- 

m e t e r  family of mechanical c o n s t i t u t i v e  equat ions,  t h e  parameter 

b e i n g  the  continuous v a r i a b l e  t. D i f f e r e n t  values  of t he  para- 

m e t e r  t de f ine  d i f f e r e n t  nonl inear  e las t ic  materials. Suppose w e  

have solved the problem of s t r e s s  a n a l y s i s  w i th in  a v i s c o e l a s t i c  

s t r u c t u r e  and f i n d  t h e  stress is constant .  This problem could 

have been solved a s  shown previously by photomethods. T h e  stress 

f i e l d  i n  such a s t r u c t u r e  a t  any t i m e  t = t coincides w i t h  the  

stress f i e l d  i n  a s i m i l a r  s t r u c t u r e  made of  a nonl inear  e las t ic  

1 

m a t e r i a l  w h o s e  mechanical c o n s t i t u t i v e  equat ion i s  given by 

( 7 . 3 : 5 )  
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Thus, by knowing t h e  s o l u t i o n  of t h e  viscoelastic problem, w e  a lso 

know t h e  stress d i s t r i b u t i o n  i n  s i m i l a r  s t r u c t u r e s  made of one of 

a family of nonl inear  e las t ic  materials.  

W e  conclude t h i s  s e c t i o n  by cons ider ing  an example i l l u s t r a t -  

i ng  the  procedure. Consider a bar of f i n i t e  l i n e a r  viscoelastic 

material under uniform axia l  loading. L e t  t h e  mechanical c o n s t i -  

t u t i v e  equat ion of the material under t h e  u n i a x i a l  loading be 

given by 

where G ( t )  i s  a material func t ion ,  h ( t )  is a time dependent s t re tch 

r a t io  and F ( l ( t ) )  is  a func t ion  of  h ( t ) .  This  equat ion  i s  given 

by Staverman and Schwarzl [I91 on the  basis of experimental  r e s u l t s .  

It has  been shown by L ian i s  [18] t o  be a s p e c i a l  case of equat ion  

(4.2:14). I f  w e  assume t h e  material  t o  be i n  i t s  n a t u r a l  s t a t e  

for  t < 0 ,  t he  lower l i m i t  of t h e  i n t e g r a l  can be rep laced  by zero.  

The  equat ion  can be inver ted :  

t .  

0 
f ( t )  = J ( O ) T ( t )  + I J ( t - T ) T ( T ) d T  8 (7.3:7) 

where J ( t )  i s  def ined by t h e  r e l a t i o n  

f t G ( t - T ) J ( T ) d T  = t 
0 

and 

f ( t )  = F ( h ( t ) )  . 

(7.3:8) 

(7.3:9) 

I n  a c reep  process,  t h e  app l i ed  stress f i e l d  i s  given by equat ion  

(7.3:2), and equat ion (7.3:9) y i e l d s  
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F ( X ( t ) )  = T O J ( t )  ( 7 . 3 : l O )  

A t  any p a r t i c u l a r  t i m e  to8 we g e t  

( 7 . 3 ~ 1 1 )  

D i f f e r e n t  func t ions  F g ive  d i f f e r e n t  equat ions,  each of  which de- 

f i n e  a c e r t a i n  nonl inear  e l a s t i c  material. 

It  should be clear t h a t  one cannot solve a l l  e l a s t i c i t y  prob- 

l e m s  t h i s  way. Only those  problems may be treated i n  which t h e  

stress s ta te  i s  t h e  same f o r  both a v i s c o e l a s t i c  and an e las t ic  

material. T h i s  implies  t h a t  t he  stress s ta te  i s  independent, i n  

s o m e  r e spec t ,  of the  material p rope r t i e s .  

7.4 RE;MARKS ON PHOTOPLASTICITY 

I n  r e c e n t  l i t e r a t u r e  on photomethods of stress ana lys i s ,  there 

w e r e  a t tempts  t o  extend the methods of  classical  p h o t o e l a s t i c i t y  

t o  t h e  case of materials i n  e l a s t i c - p l a s t i c  s ta tes  (References 10, 

11, 1 2 ) .  These methods are genera l ly  known under t h e  name photo- 

p l a s t i c i t y .  I n  t h i s  s ec t ion ,  w e  w i l l  consider  t h e  connection 

between such methods and t h e  general  theory of photomechanics. 

Le t  u s  consider  t h e  un iax ia l  deformation of t w o  bodies  made 

of d i f f e r e n t  ma te r i a l s ,  one a nonl inear  e las t ic  material and the 

o t h e r  a w o r k  hardening e l a s t i c - p l a s t i c  material. Suppose the  

a p p l i e d  load i s  monotonically increasing.  Under such a load,  t h e  

s t r e s s - s t r a i n  curve f o r  both materials looks i d e n t i c a l  and one 

cannot  d i s t i n g u i s h  an e l a s t i c - p l a s t i c  material  from a nonl inear  
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S t r e s s  

Both materials 
loading  Nonlinear e las t ic  

material  

Work hardening e l a s t i c - p l a s t i c  
material  unloading 

Figure 7 .4 : l  
S t r a i n  

e l a s t i c  material. The rea l  c h a r a c t e r i s t i c s  of t h e s e  materials 

appear only when t h e r e  i s  unloading. During unloading, t h e  non- 

l i n e a r  e l a s t i c  m a t e r i a l  retraces t h e  curve  backward, whereas t h e  

. e l a s t i c - p l a s t i c  material  fol lows a s t r a i g h t  l i n e  p a r a l l e l  t o  t h e  

i n i t i a l  s lope  of t h e  s t r e s s - s t r a i n  curve  (see Figure  7 . 4 : l ) .  A 

s i m i l a r  r e s u l t  i s  t r u e  i n  t h e  case of  t w o  and t h r e e  dimensional 

problems. Thus, under loads  where no p o i n t  exper iences  unloading, 

t h e  stress ana lys i s  problems f o r  work hardening p l a s t i c  materials 

are ind i s t ingu i shab le  f r o m  t hose  f o r  non l inea r  e las t ic  materials. 

The p l a s t i c i t y  problems considered i n  Reference [lo] and [111 

s e e m  t o  involve no unloading. Our remarks on non l inea r  e l a s t i c i t y  

t h e r e f o r e  apply t o  t h e i r  tests. ~ u r t h e r m o r e ,  t h e  au tho r s  appear 

t o  assume t h a t  t h e  stress i s  independent o f  t i m e .  I f  t h e i r  
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i -  

assumption i s  correct, then  Sect ion 8 .2  a p p l i e s ;  if not ,  t h e i r  

i n t e r p r e t a t i o n  of the i r  experiments is  quest ionable .  

I f  the problem involves  an  e l a s t i c - p l a s t i c  material and some 

p o i n t  experiences unloading during t h e  deformation process ,  then 

t h e  stress s ta te  cannot i n  general  be determined by observat ions 

on a v i s c o e l a s t i c  model. 

model m a t e r i a l  which i s  a t r anspa ren t  d ie lectr ic  and w h i c h ,  a t  

least  i n  t h e  l i m i t  of s l o w  loading, behaves as an e l a s t i c - p l a s t i c  

material. 

W e  know of no such ma te r i a l .  

It would be necessary t o  discover  a 

A theory of  t h i s  kind i s  presented i n  Reference [121. 
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